Shading language

    If you are already familiar with GLSL, the is a resource that will help you transition from regular GLSL to Godot’s shading language.

    Data types

    Most GLSL ES 3.0 datatypes are supported:

    Just like GLSL ES 3.0, implicit casting between scalars and vectors of the same size but different type is not allowed. Casting of types of different size is also not allowed. Conversion must be done explicitly via constructors.

    Example:

    Default integer constants are signed, so casting is always needed to convert to unsigned:

    1. int a = 2; // valid
    2. uint a = 2; // invalid
    3. uint a = uint(2); // valid

    Members

    Individual scalar members of vector types are accessed via the “x”, “y”, “z” and “w” members. Alternatively, using “r”, “g”, “b” and “a” also works and is equivalent. Use whatever fits best for your needs.

    For matrices, use the m[column][row] indexing syntax to access each scalar, or m[idx] to access a vector by row index. For example, for accessing the y position of an object in a mat4 you use m[3][1].

    Constructing

    Construction of vector types must always pass:

    1. // The required amount of scalars
    2. vec4 a = vec4(0.0, 1.0, 2.0, 3.0);
    3. // Complementary vectors and/or scalars
    4. vec4 a = vec4(vec2(0.0, 1.0), vec2(2.0, 3.0));
    5. vec4 a = vec4(vec3(0.0, 1.0, 2.0), 3.0);
    6. // A single scalar for the whole vector
    7. vec4 a = vec4(0.0);

    Construction of matrix types requires vectors of the same dimension as the matrix. You can also build a diagonal matrix using matx(float) syntax. Accordingly, mat4(1.0) is an identity matrix.

    1. mat2 m2 = mat2(vec2(1.0, 0.0), vec2(0.0, 1.0));
    2. mat3 m3 = mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));
    3. mat4 identity = mat4(1.0);

    Matrices can also be built from a matrix of another dimension. There are two rules : If a larger matrix is constructed from a smaller matrix, the additional rows and columns are set to the values they would have in an identity matrix. If a smaller matrix is constructed from a larger matrix, the top, left submatrix of the larger matrix is used.

    1. mat3 basis = mat3(WORLD_MATRIX);
    2. mat4 m4 = mat4(basis);
    3. mat2 m2 = mat2(m4);

    It is possible to obtain any combination of components in any order, as long as the result is another vector type (or scalar). This is easier shown than explained:

    1. vec4 a = vec4(0.0, 1.0, 2.0, 3.0);
    2. vec3 b = a.rgb; // Creates a vec3 with vec4 components.
    3. vec3 b = a.ggg; // Also valid; creates a vec3 and fills it with a single vec4 component.
    4. vec3 b = a.bgr; // "b" will be vec3(2.0, 1.0, 0.0).
    5. vec3 b = a.xyz; // Also rgba, xyzw are equivalent.
    6. vec3 b = a.stp; // And stpq (for texture coordinates).
    7. float c = b.w; // Invalid, because "w" is not present in vec3 b.
    8. vec3 c = b.xrt; // Invalid, mixing different styles is forbidden.
    9. b.rrr = a.rgb; // Invalid, assignment with duplication.
    10. b.bgr = a.rgb; // Valid assignment. "b"'s "blue" component will be "a"'s "red" and vice versa.

    Precision

    It is possible to add precision modifiers to datatypes; use them for uniforms, variables, arguments and varyings:

    1. lowp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // low precision, usually 8 bits per component mapped to 0-1
    2. mediump vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // medium precision, usually 16 bits or half float
    3. highp vec4 a = vec4(0.0, 1.0, 2.0, 3.0); // high precision, uses full float or integer range (default)

    Using lower precision for some operations can speed up the math involved (at the cost of less precision). This is rarely needed in the vertex processor function (where full precision is needed most of the time), but is often useful in the fragment processor.

    Some architectures (mainly mobile) can benefit significantly from this, but there are downsides such as the additional overhead of conversion between precisions. Refer to the documentation of the target architecture for further information. In many cases, mobile drivers cause inconsistent or unexpected behavior and it is best to avoid specifying precision unless necessary.

    Arrays

    Arrays are containers for multiple variables of a similar type. Note: As of Godot 3.2, only local and varying arrays have been implemented.

    Local arrays

    Local arrays are declared in functions. They can use all of the allowed datatypes, except samplers. The array declaration follows a C-style syntax: [const] + [precision] + typename + identifier + [array size].

    1. void fragment() {
    2. float arr[3];
    3. }

    They can be initialized at the beginning like:

    1. float float_arr[3] = float[3] (1.0, 0.5, 0.0); // first constructor
    2. int int_arr[3] = int[] (2, 1, 0); // second constructor
    3. vec2 vec2_arr[3] = { vec2(1.0, 1.0), vec2(0.5, 0.5), vec2(0.0, 0.0) }; // third constructor
    4. bool bool_arr[] = { true, true, false }; // fourth constructor - size is defined automatically from the element count

    You can declare multiple arrays (even with different sizes) in one expression:

    To access an array element, use the indexing syntax:

    1. float arr[3];
    2. arr[0] = 1.0; // setter
    3. COLOR.r = arr[0]; // getter

    Arrays also have a built-in function .length() (not to be confused with the built-in length() function). It doesn’t accept any parameters and will return the array’s size.

    1. float arr[] = { 0.0, 1.0, 0.5, -1.0 };
    2. for (int i = 0; i < arr.length(); i++) {
    3. // ...
    4. }

    Note

    If you use an index below 0 or greater than array size - the shader will crash and break rendering. To prevent this, use length(), if, or clamp() functions to ensure the index is between 0 and the array’s length. Always carefully test and check your code. If you pass a constant expression or a simple number, the editor will check its bounds to prevent this crash.

    Use the const keyword before the variable declaration to make that variable immutable, which means that it cannot be modified. All basic types, except samplers can be declared as constants. Accessing and using a constant value is slightly faster than using a uniform. Constants must be initialized at their declaration.

    1. vec2 b;
    2. a = b; // invalid
    3. b = a; // valid

    Constants cannot be modified and additionally cannot have hints, but multiple of them (if they have the same type) can be declared in a single expression e.g

    1. const vec2 V1 = vec2(1, 1), V2 = vec2(2, 2);

    Similar to variables, arrays can also be declared with const.

    1. const float arr[] = { 1.0, 0.5, 0.0 };
    2. arr[0] = 1.0; // invalid
    3. COLOR.r = arr[0]; // valid

    Constants can be declared both globally (outside of any function) or locally (inside a function). Global constants are useful when you want to have access to a value throughout your shader that does not need to be modified. Like uniforms, global constants are shared between all shader stages, but they are not accessible outside of the shader.

    1. shader_type spatial;
    2. const float PI = 3.14159265358979323846;

    Operators

    Godot shading language supports the same set of operators as GLSL ES 3.0. Below is the list of them in precedence order:

    Precedence

    Class

    Operator

    1 (highest)

    parenthetical grouping

    ()

    2

    unary

    +, -, !, ~

    3

    multiplicative

    /, *, %

    4

    additive

    +, -

    5

    bit-wise shift

    <<, >>

    6

    relational

    <, >, <=, >=

    7

    equality

    ==, !=

    8

    bit-wise AND

    &

    9

    bit-wise exclusive OR

    ^

    10

    bit-wise inclusive OR

    |

    11

    logical AND

    &&

    12 (lowest)

    logical inclusive OR

    ||

    Flow control

    Godot Shading language supports the most common types of flow control:

    1. // if and else
    2. if (cond) {
    3. } else {
    4. }
    5. // switch
    6. switch(i) { // signed integer expression
    7. case -1:
    8. break;
    9. case 0:
    10. return; // break or return
    11. case 1: // pass-through
    12. case 2:
    13. break;
    14. //...
    15. default: // optional
    16. break;
    17. }
    18. // for loops
    19. for (int i = 0; i < 10; i++) {
    20. }
    21. // while
    22. while (true) {
    23. }
    24. // do while
    25. do {
    26. } while(true);

    Keep in mind that, in modern GPUs, an infinite loop can exist and can freeze your application (including editor). Godot can’t protect you from this, so be careful not to make this mistake!

    Warning

    When exporting a GLES2 project to HTML5, WebGL 1.0 will be used. WebGL 1.0 doesn’t support dynamic loops, so shaders using those won’t work there.

    Fragment and light functions can use the discard keyword. If used, the fragment is discarded and nothing is written.

    Functions

    It is possible to define functions in a Godot shader. They use the following syntax:

    1. ret_type func_name(args) {
    2. return ret_type; // if returning a value
    3. }
    4. // a more specific example:
    5. int sum2(int a, int b) {
    6. return a + b;
    7. }

    You can only use functions that have been defined above (higher in the editor) the function from which you are calling them.

    Function arguments can have special qualifiers:

    • in: Means the argument is only for reading (default).

    • inout: Means the argument is fully passed via reference.

    Example below:

    To send data from the vertex to the fragment (or light) processor function, varyings are used. They are set for every primitive vertex in the vertex processor, and the value is interpolated for every pixel in the fragment processor.

    1. shader_type spatial;
    2. varying vec3 some_color;
    3. void vertex() {
    4. some_color = NORMAL; // Make the normal the color.
    5. }
    6. void fragment() {
    7. ALBEDO = some_color;
    8. }
    9. void light() {
    10. DIFFUSE_LIGHT = some_color * 100; // optionally
    11. }

    Varying can also be an array:

    1. shader_type spatial;
    2. varying float var_arr[3];
    3. void vertex() {
    4. var_arr[0] = 1.0;
    5. var_arr[1] = 0.0;
    6. }
    7. void fragment() {
    8. ALBEDO = vec3(var_arr[0], var_arr[1], var_arr[2]); // red color
    9. }

    It’s also possible to send data from fragment to light processors using varying keyword. To do so you can assign it in the fragment and later use it in the light function.

    1. shader_type spatial;
    2. void fragment() {
    3. some_light = ALBEDO * 100.0; // Make a shining light.
    4. }
    5. void light() {
    6. DIFFUSE_LIGHT = some_light;
    7. }

    Note that varying may not be assigned in custom functions or a light processor function like:

    1. shader_type spatial;
    2. varying float test;
    3. void foo() {
    4. test = 0.0; // Error.
    5. }
    6. void vertex() {
    7. test = 0.0;
    8. }
    9. void light() {
    10. test = 0.0; // Error too.
    11. }

    This limitation was introduced to prevent incorrect usage before initialization.

    Interpolation qualifiers

    Certain values are interpolated during the shading pipeline. You can modify how these interpolations are done by using interpolation qualifiers.

    1. shader_type spatial;
    2. varying flat vec3 our_color;
    3. void vertex() {
    4. our_color = COLOR.rgb;
    5. }
    6. void fragment() {
    7. ALBEDO = our_color;
    8. }

    There are two possible interpolation qualifiers:

    Uniforms

    Passing values to shaders is possible. These are global to the whole shader and are called uniforms. When a shader is later assigned to a material, the uniforms will appear as editable parameters in it. Uniforms can’t be written from within the shader.

    1. shader_type spatial;
    2. uniform float some_value;

    You can set uniforms in the editor in the material. Or you can set them through GDScript:

    1. material.set_shader_param("some_value", some_value)

    Note

    The first argument to set_shader_param is the name of the uniform in the shader. It must match exactly to the name of the uniform in the shader or else it will not be recognized.

    Any GLSL type except for void can be a uniform. Additionally, Godot provides optional shader hints to make the compiler understand for what the uniform is used, and how the editor should allow users to modify it.

    1. shader_type spatial;
    2. uniform vec4 color : hint_color;
    3. uniform float amount : hint_range(0, 1);
    4. uniform vec4 other_color : hint_color = vec4(1.0);

    It’s important to understand that textures that are supplied as color require hints for proper sRGB->linear conversion (i.e. hint_albedo), as Godot’s 3D engine renders in linear color space.

    Full list of hints below:

    Type

    Hint

    Description

    vec4

    hint_color

    Used as color.

    int, float

    hint_range(min, max[, step])

    Restricted to values in a range (with min/max/step).

    sampler2D

    hint_albedo

    Used as albedo color, default white.

    sampler2D

    hint_black_albedo

    Used as albedo color, default black.

    sampler2D

    hint_normal

    Used as normalmap.

    sampler2D

    hint_white

    As value, default to white.

    sampler2D

    hint_black

    As value, default to black

    sampler2D

    hint_aniso

    As flowmap, default to right.

    GDScript uses different variable types than GLSL does, so when passing variables from GDScript to shaders, Godot converts the type automatically. Below is a table of the corresponding types:

    Note

    Be careful when setting shader uniforms from GDScript, no error will be thrown if the type does not match. Your shader will just exhibit undefined behavior.

    Uniforms can also be assigned default values:

    Built-in variables

    A large number of built-in variables are available, like UV, COLOR and VERTEX. What variables are available depends on the type of shader (spatial, canvas_item or particle) and the function used (vertex, fragment or light). For a list of the build-in variables that are available, please see the corresponding pages:

    A large number of built-in functions are supported, conforming to GLSL ES 3.0. When vec_type (float), vec_int_type, vec_uint_type, vec_bool_type nomenclature is used, it can be scalar or vector.

    Note

    For a list of the functions that are not available in the GLES2 backend, please see the Differences between GLES2 and GLES3 doc.

    Function

    Description

    vec_type radians (vec_type degrees)

    Convert degrees to radians

    vec_type degrees (vec_type radians)

    Convert radians to degrees

    vec_type sin (vec_type x)

    Sine

    vec_type cos (vec_type x)

    Cosine

    vec_type tan (vec_type x)

    Tangent

    vec_type asin (vec_type x)

    Arcsine

    vec_type acos (vec_type x)

    Arccosine

    vec_type atan (vec_type y_over_x)

    Arctangent

    vec_type atan (vec_type y, vec_type x)

    Arctangent to convert vector to angle

    vec_type sinh (vec_type x)

    Hyperbolic sine

    vec_type cosh (vec_type x)

    Hyperbolic cosine

    vec_type tanh (vec_type x)

    Hyperbolic tangent

    vec_type asinh (vec_type x)

    Inverse hyperbolic sine

    vec_type acosh (vec_type x)

    Inverse hyperbolic cosine

    vec_type atanh (vec_type x)

    Inverse hyperbolic tangent

    vec_type pow (vec_type x, vec_type y)

    Power (undefined if x < 0 or if x = 0 and y <= 0)

    vec_type exp (vec_type x)

    Base-e exponential

    vec_type exp2 (vec_type x)

    Base-2 exponential

    vec_type log (vec_type x)

    Natural logarithm

    vec_type log2 (vec_type x)

    Base-2 logarithm

    vec_type sqrt (vec_type x)

    Square root

    vec_type inversesqrt (vec_type x)

    Inverse square root

    vec_type abs (vec_type x)

    Absolute

    ivec_type abs (ivec_type x)

    Absolute

    vec_type sign (vec_type x)

    Sign

    ivec_type sign (ivec_type x)

    Sign

    vec_type floor (vec_type x)

    Floor

    vec_type round (vec_type x)

    Round

    vec_type roundEven (vec_type x)

    vec_type trunc (vec_type x)

    Truncation

    vec_type ceil (vec_type x)

    Ceil

    vec_type fract (vec_type x)

    Fractional

    vec_type mod (vec_type x, vec_type y)

    Remainder

    vec_type mod (vec_type x , float y)

    Remainder

    vec_type modf (vec_type x, out vec_type i)

    Fractional of x, with i as integer part

    vec_type min (vec_type a, vec_type b)

    Minimum

    vec_type max (vec_type a, vec_type b)

    Maximum

    vec_type clamp (vec_type x, vec_type min, vec_type max)

    Clamp to min..max

    float mix (float a, float b, float c)

    Linear interpolate

    vec_type mix (vec_type a, vec_type b, float c)

    Linear interpolate (scalar coefficient)

    vec_type mix (vec_type a, vec_type b, vec_type c)

    Linear interpolate (vector coefficient)

    vec_type mix (vec_type a, vec_type b, bvec_type c)

    Linear interpolate (boolean-vector selection)

    vec_type step (vec_type a, vec_type b)

    b[i] < a[i] ? 0.0 : 1.0

    vec_type step (float a, vec_type b)

    b[i] < a ? 0.0 : 1.0

    vec_type smoothstep (vec_type a, vec_type b, vec_type c)

    Hermite interpolate

    vec_type smoothstep (float a, float b, vec_type c)

    Hermite interpolate

    bvec_type isnan (vec_type x)

    Returns true if scalar or vector component is NaN

    bvec_type isinf (vec_type x)

    Returns true if scalar or vector component is INF

    ivec_type floatBitsToInt (vec_type x)

    Float->Int bit copying, no conversion

    uvec_type floatBitsToUint (vec_type x)

    Float->UInt bit copying, no conversion

    vec_type intBitsToFloat (ivec_type x)

    Int->Float bit copying, no conversion

    vec_type uintBitsToFloat (uvec_type x)

    UInt->Float bit copying, no conversion

    float length (vec_type x)

    Vector length

    float distance (vec_type a, vec_type b)

    Distance between vectors i.e length(a - b)

    float dot (vec_type a, vec_type b)

    Dot product

    vec3 cross (vec3 a, vec3 b)

    Cross product

    vec_type normalize (vec_type x)

    Normalize to unit length

    vec3 reflect (vec3 I, vec3 N)

    Reflect

    vec3 refract (vec3 I, vec3 N, float eta)

    Refract

    vec_type faceforward (vec_type N, vec_type I, vec_type Nref)

    If dot(Nref, I) < 0, return N, otherwise –N

    mat_type matrixCompMult (mat_type x, mat_type y)

    Matrix component multiplication

    mat_type outerProduct (vec_type column, vec_type row)

    Matrix outer product

    mat_type transpose (mat_type m)

    Transpose matrix

    float determinant (mat_type m)

    Matrix determinant

    mat_type inverse (mat_type m)

    Inverse matrix

    bvec_type lessThan (vec_type x, vec_type y)

    Bool vector comparison on < int/uint/float vectors

    bvec_type greaterThan (vec_type x, vec_type y)

    Bool vector comparison on > int/uint/float vectors

    bvec_type lessThanEqual (vec_type x, vec_type y)

    Bool vector comparison on <= int/uint/float vectors

    bvec_type greaterThanEqual (vec_type x, vec_type y)

    Bool vector comparison on >= int/uint/float vectors

    bvec_type equal (vec_type x, vec_type y)

    Bool vector comparison on == int/uint/float vectors

    bvec_type notEqual (vec_type x, vec_type y)

    Bool vector comparison on != int/uint/float vectors

    bool any (bvec_type x)

    Any component is true

    bool all (bvec_type x)

    All components are true

    bvec_type not (bvec_type x)

    Invert boolean vector

    ivec2 textureSize (sampler2D_type s, int lod)

    Get the size of a 2D texture

    ivec3 textureSize (sampler2DArray_type s, int lod)

    Get the size of a 2D texture array

    ivec3 textureSize (sampler3D s, int lod)

    Get the size of a 3D texture

    ivec2 textureSize (samplerCube s, int lod)

    Get the size of a cubemap texture

    vec4_type texture (sampler2D_type s, vec2 uv [, float bias])

    Perform a 2D texture read

    vec4_type texture (sampler2DArray_type s, vec3 uv [, float bias])

    Perform a 2D texture array read

    vec4_type texture (sampler3D_type s, vec3 uv [, float bias])

    Perform a 3D texture read

    vec4 texture (samplerCube s, vec3 uv [, float bias])

    Perform a cubemap texture read

    vec4_type textureProj (sampler2D_type s, vec3 uv [, float bias])

    Perform a 2D texture read with projection

    vec4_type textureProj (sampler2D_type s, vec4 uv [, float bias])

    Perform a 2D texture read with projection

    vec4_type textureProj (sampler3D_type s, vec4 uv [, float bias])

    Perform a 3D texture read with projection

    vec4_type textureLod (sampler2D_type s, vec2 uv, float lod)

    Perform a 2D texture read at custom mipmap

    vec4_type textureLod (sampler2DArray_type s, vec3 uv, float lod)

    Perform a 2D texture array read at custom mipmap

    vec4_type textureLod (sampler3D_type s, vec3 uv, float lod)

    Perform a 3D texture read at custom mipmap

    vec4 textureLod (samplerCube s, vec3 uv, float lod)

    Perform a 3D texture read at custom mipmap

    vec4_type textureProjLod (sampler2D_type s, vec3 uv, float lod)

    Perform a 2D texture read with projection/LOD

    vec4_type textureProjLod (sampler2D_type s, vec4 uv, float lod)

    Perform a 2D texture read with projection/LOD

    vec4_type textureProjLod (sampler3D_type s, vec4 uv, float lod)

    Perform a 3D texture read with projection/LOD

    vec4_type texelFetch (sampler2D_type s, ivec2 uv, int lod)

    Fetch a single texel using integer coordinates

    vec4_type texelFetch (sampler2DArray_type s, ivec3 uv, int lod)

    Fetch a single texel using integer coordinates

    vec4_type texelFetch (sampler3D_type s, ivec3 uv, int lod)

    Fetch a single texel using integer coordinates

    vec_type dFdx (vec_type p)

    Derivative in x using local differencing

    vec_type dFdy (vec_type p)

    Derivative in y using local differencing

    vec_type fwidth (vec_type p)