Transform2D

    2×3 matrix (2 rows, 3 columns) used for 2D linear transformations. It can represent transformations such as translation, rotation, or scaling. It consists of three values: x, , and the origin.

    For more information, read the “Matrices and transforms” documentation article.

    Tutorials

    Methods

    • FLIP_X = Transform2D( -1, 0, 0, 1, 0, 0 ) —- The Transform2D that will flip something along the X axis.

    • FLIP_Y = Transform2D( 1, 0, 0, -1, 0, 0 ) —- The Transform2D that will flip something along the Y axis.

    Property Descriptions

    The origin vector (column 2, the third column). Equivalent to array index 2. The origin vector represents translation.


    • x

    The basis matrix’s X vector (column 0). Equivalent to array index 0.


    The basis matrix’s Y vector (column 1). Equivalent to array index 1.

    Constructs the transform from a 3D Transform.


    Constructs the transform from 3 values representing x, , and the origin (the three column vectors).


    • Transform2D ( float rotation, position )

    Constructs the transform from a given angle (in radians) and position.


    Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.


    Returns a vector transformed (multiplied) by the basis matrix.

    This method does not account for translation (the origin vector).


    Returns a vector transformed (multiplied) by the inverse basis matrix.

    This method does not account for translation (the origin vector).


    Returns the transform’s origin (translation).


    • get_rotation ( )

    Returns the transform’s rotation (in radians).


    Returns the scale.


    Returns a transform interpolated between this transform and another by a given (on the range of 0.0 to 1.0).


    Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use for transforms with scaling).


    • bool is_equal_approx ( transform )

    Returns true if this transform and transform are approximately equal, by calling is_equal_approx on each component.


    Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors (scale of 1 or -1).


    Returns a copy of the transform rotated by the given angle (in radians), using matrix multiplication.


    Returns a copy of the transform scaled by the given scale factor, using matrix multiplication.

    Note: Negative X scales in 2D are not decomposable from the transformation matrix. Due to the way scale is represented with transformation matrices in Godot, negative scales on the X axis will be changed to negative scales on the Y axis and a rotation of 180 degrees when decomposed.


    Returns a copy of the transform translated by the given , relative to the transform’s basis vectors.

    Unlike and scaled, this does not use matrix multiplication.



    Inverse-transforms the given , Rect2, or by this transform, under the assumption that the transformation is composed of rotation and translation (no scaling). Equivalent to calling inverse().xform(v) on this transform. For affine transformations (e.g. with scaling) see affine_inverse method.