1. Recourse processes—Arkansas’s buggy healthcare algorithms left patients stranded.
    2. Bias—When a traditionally African-American name is searched for on Google, it displays ads for criminal background checks.

    In fact, for every concept that we introduce in this chapter, we are going to provide at least one specific example. For each one, think about what you could have done in this situation, and what kinds of obstructions there might have been to you getting that done. How would you deal with them? What would you look out for?

    The Verge investigated software used in over half of the US states to determine how much healthcare people receive, and documented their findings in the article . After implementation of the algorithm in Arkansas, hundreds of people (many with severe disabilities) had their healthcare drastically cut. For instance, Tammy Dobbs, a woman with cerebral palsy who needs an aid to help her to get out of bed, to go to the bathroom, to get food, and more, had her hours of help suddenly reduced by 20 hours a week. She couldn’t get any explanation for why her healthcare was cut. Eventually, a court case revealed that there were mistakes in the software implementation of the algorithm, negatively impacting people with diabetes or cerebral palsy. However, Dobbs and many other people reliant on these healthcare benefits live in fear that their benefits could again be cut suddenly and inexplicably.

    Feedback loops can occur when your model is controlling the next round of data you get. The data that is returned quickly becomes flawed by the software itself.

    For instance, YouTube has 1.9 billion users, who watch over 1 billion hours of YouTube videos a day. Its recommendation algorithm (built by Google), which was designed to optimize watch time, is responsible for around 70% of the content that is watched. But there was a problem: it led to out-of-control feedback loops, leading the New York Times to run the headline “YouTube Unleashed a Conspiracy Theory Boom. Can It Be Contained?”. Ostensibly recommendation systems are predicting what content people will like, but they also have a lot of power in determining what content people even see.

    Dr. Latanya Sweeney is a professor at Harvard and director of the university’s data privacy lab. In the paper (see <>) she describes her discovery that Googling her name resulted in advertisements saying “Latanya Sweeney, arrested?” even though she is the only known Latanya Sweeney and has never been arrested. However when she Googled other names, such as “Kirsten Lindquist,” she got more neutral ads, even though Kirsten Lindquist has been arrested three times.

    This is an example of bias. It can make a big difference to people’s lives—for instance, if a job applicant is Googled it may appear that they have a criminal record when they do not.

    One very natural reaction to considering these issues is: “So what? What’s that got to do with me? I’m a data scientist, not a politician. I’m not one of the senior executives at my company who make the decisions about what we do. I’m just trying to build the most predictive model I can.”

    These are very reasonable questions. But we’re going to try to convince you that the answer is that everybody who is training models absolutely needs to consider how their models will be used, and consider how to best ensure that they are used as positively as possible. There are things you can do. And if you don’t do them, then things can go pretty badly.

    One particularly hideous example of what happens when technologists focus on technology at all costs is the story of IBM and Nazi Germany. In 2001, a Swiss judge ruled that it was not unreasonable “to deduce that IBM’s technical assistance facilitated the tasks of the Nazis in the commission of their crimes against humanity, acts also involving accountancy and classification by IBM machines and utilized in the concentration camps themselves.”

    IBM, you see, supplied the Nazis with data tabulation products necessary to track the extermination of Jews and other groups on a massive scale. This was driven from the top of the company, with marketing to Hitler and his leadership team. Company President Thomas Watson personally approved the 1939 release of special IBM alphabetizing machines to help organize the deportation of Polish Jews. Pictured in <> is Adolf Hitler (far left) meeting with IBM CEO Tom Watson Sr. (second from left), shortly before Hitler awarded Watson a special “Service to the Reich” medal in 1937.

    A picture of IBM CEO Tom Watson Sr. meeting with Adolf Hitler

    Of course, the project managers and engineers and technicians involved were just living their ordinary lives. Caring for their families, going to the church on Sunday, doing their jobs the best they could. Following orders. The marketers were just doing what they could to meet their business development goals. As Edwin Black, author of IBM and the Holocaust (Dialog Press) observed: “To the blind technocrat, the means were more important than the ends. The destruction of the Jewish people became even less important because the invigorating nature of IBM’s technical achievement was only heightened by the fantastical profits to be made at a time when bread lines stretched across the world.”

    Step back for a moment and consider: How would you feel if you discovered that you had been part of a system that ended up hurting society? Would you be open to finding out? How can you help make sure this doesn’t happen? We have described the most extreme situation here, but there are many negative societal consequences linked to AI and machine learning being observed today, some of which we’ll describe in this chapter.

    It’s not just a moral burden, either. Sometimes technologists pay very directly for their actions. For instance, the first person who was jailed as a result of the Volkswagen scandal, where the car company was revealed to have cheated on its diesel emissions tests, was not the manager that oversaw the project, or an executive at the helm of the company. It was one of the engineers, James Liang, who just did what he was told.

    Of course, it’s not all bad—if a project you are involved in turns out to make a huge positive impact on even one person, this is going to make you feel pretty great!

    Okay, so hopefully we have convinced you that you ought to care. But what should you do? As data scientists, we’re naturally inclined to focus on making our models better by optimizing some metric or other. But optimizing that metric may not actually lead to better outcomes. And even if it does help create better outcomes, it almost certainly won’t be the only thing that matters. Consider the pipeline of steps that occurs between the development of a model or an algorithm by a researcher or practitioner, and the point at which this work is actually used to make some decision. This entire pipeline needs to be considered as a whole if we’re to have a hope of getting the kinds of outcomes we want.

    Sometimes, the right response to being asked to do a piece of work is to just say “no.” Often, however, the response we hear is, “If I don’t do it, someone else will.” But consider this: if you’ve been picked for the job, you’re the best person they’ve found to do it—so if you don’t do it, the best person isn’t working on that project. If the first five people they ask all say no too, even better!