Conv3DTranspose

    该接口用于构建 类的一个可调用对象,具体用法参照 代码示例 。3D卷积转置层(Convlution3D transpose layer)根据输入(input)、滤波器(filter)和卷积核膨胀(dilations)、步长(stride)、填充来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCDHW格式。其中 N 为batch大小, C 为通道数(channel), D 为特征深度, 为特征高度, W 为特征宽度。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解卷积转置层细节,请参考下面的说明和 参考文献 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。如果act不为None,则转置卷积计算之后添加相应的激活函数。

    输入

    和输出

    Conv3DTranspose - 图2

    函数关系如下:

    其中:

    • Conv3DTranspose - 图4

      : 输入图像,具有NCDHW格式的张量(Tensor)

    • : 滤波器,具有NCDHW格式的张量(Tensor)

    • Conv3DTranspose - 图6

      : 卷积操作(注意:转置卷积本质上的计算还是卷积)

    • : 偏置(bias),维度为

      Conv3DTranspose - 图8

      的2D Tensor

    • : 激活函数

    样例

    输入:

    输出:

    输出Tensor的维度:

    Conv3DTranspose - 图13

    其中:

    Conv3DTranspose - 图15

    注意 :

    如果output_size为None,则

    =

    Conv3DTranspose - 图17

    , HoutHout = H′outHout′ , WoutWout = W′outWout′ ;否则,指定的output_size_depth(输出特征层的深度) DoutDout 应当介于 D′outDout′ 和 D′out+strides[0]Dout′+strides[0] 之间(不包含 D′out+strides[0]Dout′+strides[0] ),指定的output_size_height(输出特征层的高) HoutHout 应当介于 H′outHout′ 和 H′out+strides[1]Hout′+strides[1] 之间(不包含 H′out+strides[1]Hout′+strides[1] ), 并且指定的output_size_width(输出特征层的宽) WoutWout 应当介于 W′outWout′ 和 W′out+strides[2]Wout′+strides[2] 之间(不包含 W′out+strides[2]Wout′+strides[2] )。

    由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。

    参数:

    • num_channels (int) - 输入图像的通道数。

    • num_filters (int) - 滤波器(卷积核)的个数,与输出的图片的通道数相同。

    • filter_size (int|tuple) - 滤波器大小。如果filter_size是一个元组,则必须包含三个整型数,(filter_size_depth,filter_size_height, filter_size_width)。否则,filter_size_depth = filter_size_height = filter_size_width = filter_size。如果filter_size=None,则必须指定output_size, 其会根据output_size、padding和stride计算出滤波器大小。

    • output_size (int|tuple,可选) - 输出图片的大小。如果 output_size 是一个元组(tuple),则该元形式为(image_H,image_W),这两个值必须为整型。如果未设置,则内部会使用filter_size、padding和stride来计算output_size。如果 和 filter_size 是同时指定的,那么它们应满足上面的公式。默认值为None。output_size和filter_size不能同时为None。

    • padding (int|tuple,可选) - 填充padding大小。padding参数在输入特征层每边添加 dilation * (kernel_size - 1) - padding 个0。如果padding是一个元组,它必须包含三个整数(padding_depth,padding_height,padding_width)。否则,padding_depth = padding_height = padding_width = padding。默认值为0。

    • stride (int|tuple,可选) - 步长stride大小。滤波器和输入进行卷积计算时滑动的步长。如果stride是一个元组,那么元组的形式为(stride_depth,stride_height,stride_width)。否则,stride_depth = stride_height = stride_width = stride。默认值为1。

    • groups (int,可选) - 三维转置卷积层的组数。从Alex Krizhevsky的CNN Deep论文中的群卷积中受到启发,当group=2时,输入和滤波器分别根据通道数量平均分为两组,第一组滤波器和第一组输入进行卷积计算,第二组滤波器和第二组输入进行卷积计算。默认值为1。

    • param_attr (ParamAttr,可选) - 指定权重参数属性的对象。默认值为None,表示使用默认的权重参数属性。具体用法请参见 。

    • bias_attr (ParamAttr,可选) - 指定偏置参数属性的对象。默认值为None,表示使用默认的偏置参数属性。具体用法请参见 ParamAttr

    • use_cudnn (bool,可选) - 是否使用cudnn内核,只有安装Paddle GPU版时才有效。默认值为True。

    • act (str,可选) - 激活函数类型,如果设置为None,则不使用激活函数。默认值为None。

    • name (str,可选) - 具体用法请参见 ,一般无需设置,默认值为None。

    返回: 无

    代码示例

    weight

    本层的可学习参数,类型为 Parameter

    bias