- Custom
#[derive]
macros that specify code added with thederive
attribute used on structs and enums - Function-like macros that look like function calls but operate on the tokens specified as their argument
We’ll talk about each of these in turn, but first, let’s look at why we even need macros when we already have functions.
Fundamentally, macros are a way of writing code that writes other code, which is known as metaprogramming. In Appendix C, we discuss the derive
attribute, which generates an implementation of various traits for you. We’ve also used the println!
and vec!
macros throughout the book. All of these macros expand to produce more code than the code you’ve written manually.
Metaprogramming is useful for reducing the amount of code you have to write and maintain, which is also one of the roles of functions. However, macros have some additional powers that functions don’t.
A function signature must declare the number and type of parameters the function has. Macros, on the other hand, can take a variable number of parameters: we can call println!("hello")
with one argument or println!("hello {}", name)
with two arguments. Also, macros are expanded before the compiler interprets the meaning of the code, so a macro can, for example, implement a trait on a given type. A function can’t, because it gets called at runtime and a trait needs to be implemented at compile time.
The downside to implementing a macro instead of a function is that macro definitions are more complex than function definitions because you’re writing Rust code that writes Rust code. Due to this indirection, macro definitions are generally more difficult to read, understand, and maintain than function definitions.
Another important difference between macros and functions is that you must define macros or bring them into scope before you call them in a file, as opposed to functions you can define anywhere and call anywhere.
The most widely used form of macros in Rust is declarative macros. These are also sometimes referred to as “macros by example,” “macro_rules!
macros,” or just plain “macros.” At their core, declarative macros allow you to write something similar to a Rust match
expression. As discussed in Chapter 6, match
expressions are control structures that take an expression, compare the resulting value of the expression to patterns, and then run the code associated with the matching pattern. Macros also compare a value to patterns that are associated with particular code: in this situation, the value is the literal Rust source code passed to the macro; the patterns are compared with the structure of that source code; and the code associated with each pattern, when matched, replaces the code passed to the macro. This all happens during compilation.
To define a macro, you use the macro_rules!
construct. Let’s explore how to use macro_rules!
by looking at how the vec!
macro is defined. Chapter 8 covered how we can use the vec!
macro to create a new vector with particular values. For example, the following macro creates a new vector containing three integers:
We could also use the vec!
macro to make a vector of two integers or a vector of five string slices. We wouldn’t be able to use a function to do the same because we wouldn’t know the number or type of values up front.
Listing 19-28 shows a slightly simplified definition of the vec!
macro.
Filename: src/lib.rs
#[macro_export] macro_rules! vec { ( $( $x:expr ),* ) => { { let mut temp_vec = Vec::new(); $( temp_vec.push($x); )* temp_vec } }; }
Listing 19-28: A simplified version of the vec!
macro definition
The #[macro_export]
annotation indicates that this macro should be made available whenever the crate in which the macro is defined is brought into scope. Without this annotation, the macro can’t be brought into scope.
We then start the macro definition with macro_rules!
and the name of the macro we’re defining without the exclamation mark. The name, in this case vec
, is followed by curly brackets denoting the body of the macro definition.
The structure in the vec!
body is similar to the structure of a match
expression. Here we have one arm with the pattern ( $( $x:expr ),* )
, followed by =>
and the block of code associated with this pattern. If the pattern matches, the associated block of code will be emitted. Given that this is the only pattern in this macro, there is only one valid way to match; any other pattern will result in an error. More complex macros will have more than one arm.
Valid pattern syntax in macro definitions is different than the pattern syntax covered in Chapter 18 because macro patterns are matched against Rust code structure rather than values. Let’s walk through what the pattern pieces in Listing 19-28 mean; for the full macro pattern syntax, see the reference.
First, a set of parentheses encompasses the whole pattern. A dollar sign ($
) is next, followed by a set of parentheses that captures values that match the pattern within the parentheses for use in the replacement code. Within $()
is $x:expr
, which matches any Rust expression and gives the expression the name $x
.
The comma following $()
indicates that a literal comma separator character could optionally appear after the code that matches the code in $()
. The *
specifies that the pattern matches zero or more of whatever precedes the *
.
When we call this macro with vec![1, 2, 3];
, the $x
pattern matches three times with the three expressions 1
, 2
, and 3
.
Now let’s look at the pattern in the body of the code associated with this arm: temp_vec.push()
within $()*
is generated for each part that matches $()
in the pattern zero or more times depending on how many times the pattern matches. The $x
is replaced with each expression matched. When we call this macro with vec![1, 2, 3];
, the code generated that replaces this macro call will be the following:
{ let mut temp_vec = Vec::new(); temp_vec.push(1); temp_vec.push(2); temp_vec.push(3); temp_vec }
We’ve defined a macro that can take any number of arguments of any type and can generate code to create a vector containing the specified elements.
There are some strange edge cases with macro_rules!
. In the future, Rust will have a second kind of declarative macro that will work in a similar fashion but fix some of these edge cases. After that update, macro_rules!
will be effectively deprecated. With this in mind, as well as the fact that most Rust programmers will use macros more than write macros, we won’t discuss macro_rules!
any further. To learn more about how to write macros, consult the online documentation or other resources, such as started by Daniel Keep and continued by Lukas Wirth.
The second form of macros is procedural macros, which act more like functions (and are a type of procedure). Procedural macros accept some code as an input, operate on that code, and produce some code as an output rather than matching against patterns and replacing the code with other code as declarative macros do.
The three kinds of procedural macros (custom derive, attribute-like, and function-like) all work in a similar fashion.
When creating procedural macros, the definitions must reside in their own crate with a special crate type. This is for complex technical reasons that we hope to eliminate in the future. Using procedural macros looks like the code in Listing 19-29, where some_attribute
is a placeholder for using a specific macro.
Filename: src/lib.rs
use proc_macro; #[some_attribute] pub fn some_name(input: TokenStream) -> TokenStream { }
The function that defines a procedural macro takes a TokenStream
as an input and produces a TokenStream
as an output. The TokenStream
type is defined by the proc_macro
crate that is included with Rust and represents a sequence of tokens. This is the core of the macro: the source code that the macro is operating on makes up the input TokenStream
, and the code the macro produces is the output TokenStream
. The function also has an attribute attached to it that specifies which kind of procedural macro we’re creating. We can have multiple kinds of procedural macros in the same crate.
Let’s look at the different kinds of procedural macros. We’ll start with a custom derive macro and then explain the small dissimilarities that make the other forms different.
Let’s create a crate named hello_macro
that defines a trait named HelloMacro
with one associated function named hello_macro
. Rather than making our crate users implement the HelloMacro
trait for each of their types, we’ll provide a procedural macro so users can annotate their type with #[derive(HelloMacro)]
to get a default implementation of the hello_macro
function. The default implementation will print Hello, Macro! My name is TypeName!
where TypeName
is the name of the type on which this trait has been defined. In other words, we’ll write a crate that enables another programmer to write code like Listing 19-30 using our crate.
Filename: src/main.rs
use hello_macro::HelloMacro; use hello_macro_derive::HelloMacro; #[derive(HelloMacro)] struct Pancakes; fn main() { Pancakes::hello_macro(); }
Listing 19-30: The code a user of our crate will be able to write when using our procedural macro
This code will print Hello, Macro! My name is Pancakes!
when we’re done. The first step is to make a new library crate, like this:
$ cargo new hello_macro --lib
Next, we’ll define the trait and its associated function:
Filename: src/lib.rs
pub trait HelloMacro { fn hello_macro(); }
We have a trait and its function. At this point, our crate user could implement the trait to achieve the desired functionality, like so:
use hello_macro::HelloMacro; struct Pancakes; impl HelloMacro for Pancakes { fn hello_macro() { println!("Hello, Macro! My name is Pancakes!"); } } fn main() { Pancakes::hello_macro(); }
However, they would need to write the implementation block for each type they wanted to use with hello_macro
; we want to spare them from having to do this work.
Additionally, we can’t yet provide the hello_macro
function with default implementation that will print the name of the type the trait is implemented on: Rust doesn’t have reflection capabilities, so it can’t look up the type’s name at runtime. We need a macro to generate code at compile time.
The next step is to define the procedural macro. At the time of this writing, procedural macros need to be in their own crate. Eventually, this restriction might be lifted. The convention for structuring crates and macro crates is as follows: for a crate named foo
, a custom derive procedural macro crate is called foo_derive
. Let’s start a new crate called hello_macro_derive
inside our hello_macro
project:
$ cargo new hello_macro_derive --lib
Our two crates are tightly related, so we create the procedural macro crate within the directory of our hello_macro
crate. If we change the trait definition in hello_macro
, we’ll have to change the implementation of the procedural macro in hello_macro_derive
as well. The two crates will need to be published separately, and programmers using these crates will need to add both as dependencies and bring them both into scope. We could instead have the hello_macro
crate use hello_macro_derive
as a dependency and re-export the procedural macro code. However, the way we’ve structured the project makes it possible for programmers to use hello_macro
even if they don’t want the derive
functionality.
We need to declare the hello_macro_derive
crate as a procedural macro crate. We’ll also need functionality from the syn
and quote
crates, as you’ll see in a moment, so we need to add them as dependencies. Add the following to the Cargo.toml file for hello_macro_derive
:
Filename: hello_macro_derive/Cargo.toml
proc-macro = true [dependencies] syn = "1.0" quote = "1.0"
To start defining the procedural macro, place the code in Listing 19-31 into your src/lib.rs file for the hello_macro_derive
crate. Note that this code won’t compile until we add a definition for the impl_hello_macro
function.
Filename: hello_macro_derive/src/lib.rs
extern crate proc_macro; use proc_macro::TokenStream; use quote::quote; use syn; #[proc_macro_derive(HelloMacro)] pub fn hello_macro_derive(input: TokenStream) -> TokenStream { // Construct a representation of Rust code as a syntax tree // that we can manipulate let ast = syn::parse(input).unwrap(); // Build the trait implementation impl_hello_macro(&ast) }
Listing 19-31: Code that most procedural macro crates will require in order to process Rust code
Notice that we’ve split the code into the hello_macro_derive
function, which is responsible for parsing the TokenStream
, and the impl_hello_macro
function, which is responsible for transforming the syntax tree: this makes writing a procedural macro more convenient. The code in the outer function (hello_macro_derive
in this case) will be the same for almost every procedural macro crate you see or create. The code you specify in the body of the inner function (impl_hello_macro
in this case) will be different depending on your procedural macro’s purpose.
We’ve introduced three new crates: proc_macro
, syn
, and . The proc_macro
crate comes with Rust, so we didn’t need to add that to the dependencies in Cargo.toml. The proc_macro
crate is the compiler’s API that allows us to read and manipulate Rust code from our code.
The syn
crate parses Rust code from a string into a data structure that we can perform operations on. The quote
crate turns syn
data structures back into Rust code. These crates make it much simpler to parse any sort of Rust code we might want to handle: writing a full parser for Rust code is no simple task.
The hello_macro_derive
function will be called when a user of our library specifies #[derive(HelloMacro)]
on a type. This is possible because we’ve annotated the hello_macro_derive
function here with proc_macro_derive
and specified the name, HelloMacro
, which matches our trait name; this is the convention most procedural macros follow.
The hello_macro_derive
function first converts the input
from a TokenStream
to a data structure that we can then interpret and perform operations on. This is where syn
comes into play. The parse
function in syn
takes a TokenStream
and returns a DeriveInput
struct representing the parsed Rust code. Listing 19-32 shows the relevant parts of the DeriveInput
struct we get from parsing the struct Pancakes;
string:
Listing 19-32: The DeriveInput
instance we get when parsing the code that has the macro’s attribute in Listing 19-30
The fields of this struct show that the Rust code we’ve parsed is a unit struct with the ident
(identifier, meaning the name) of Pancakes
. There are more fields on this struct for describing all sorts of Rust code; check the syn
documentation for DeriveInput
for more information.
Soon we’ll define the impl_hello_macro
function, which is where we’ll build the new Rust code we want to include. But before we do, note that the output for our derive macro is also a TokenStream
. The returned TokenStream
is added to the code that our crate users write, so when they compile their crate, they’ll get the extra functionality that we provide in the modified TokenStream
.
You might have noticed that we’re calling unwrap
to cause the hello_macro_derive
function to panic if the call to the syn::parse
function fails here. It’s necessary for our procedural macro to panic on errors because proc_macro_derive
functions must return TokenStream
rather than Result
to conform to the procedural macro API. We’ve simplified this example by using unwrap
; in production code, you should provide more specific error messages about what went wrong by using panic!
or expect
.
Now that we have the code to turn the annotated Rust code from a TokenStream
into a instance, let’s generate the code that implements the HelloMacro
trait on the annotated type, as shown in Listing 19-33.
Filename: hello_macro_derive/src/lib.rs
extern crate proc_macro; use proc_macro::TokenStream; use quote::quote; use syn; #[proc_macro_derive(HelloMacro)] pub fn hello_macro_derive(input: TokenStream) -> TokenStream { // Construct a representation of Rust code as a syntax tree // that we can manipulate let ast = syn::parse(input).unwrap(); // Build the trait implementation impl_hello_macro(&ast) } fn impl_hello_macro(ast: &syn::DeriveInput) -> TokenStream { let name = &ast.ident; let gen = quote! { impl HelloMacro for #name { fn hello_macro() { println!("Hello, Macro! My name is {}!", stringify!(#name)); } } }; gen.into() }
Listing 19-33: Implementing the HelloMacro
trait using the parsed Rust code
We get an Ident
struct instance containing the name (identifier) of the annotated type using ast.ident
. The struct in Listing 19-32 shows that when we run the impl_hello_macro
function on the code in Listing 19-30, the ident
we get will have the ident
field with a value of "Pancakes"
. Thus, the name
variable in Listing 19-33 will contain an Ident
struct instance that, when printed, will be the string "Pancakes"
, the name of the struct in Listing 19-30.
The quote!
macro lets us define the Rust code that we want to return. The compiler expects something different to the direct result of the quote!
macro’s execution, so we need to convert it to a TokenStream
. We do this by calling the into
method, which consumes this intermediate representation and returns a value of the required TokenStream
type.
The quote!
macro also provides some very cool templating mechanics: we can enter #name
, and quote!
will replace it with the value in the variable name
. You can even do some repetition similar to the way regular macros work. Check out for a thorough introduction.
We want our procedural macro to generate an implementation of our HelloMacro
trait for the type the user annotated, which we can get by using #name
. The trait implementation has one function, hello_macro
, whose body contains the functionality we want to provide: printing Hello, Macro! My name is
and then the name of the annotated type.
The stringify!
macro used here is built into Rust. It takes a Rust expression, such as 1 + 2
, and at compile time turns the expression into a string literal, such as "1 + 2"
. This is different than format!
or println!
, macros which evaluate the expression and then turn the result into a String
. There is a possibility that the #name
input might be an expression to print literally, so we use stringify!
. Using stringify!
also saves an allocation by converting #name
to a string literal at compile time.
At this point, cargo build
should complete successfully in both hello_macro
and hello_macro_derive
. Let’s hook up these crates to the code in Listing 19-30 to see the procedural macro in action! Create a new binary project in your projects directory using cargo new pancakes
. We need to add hello_macro
and hello_macro_derive
as dependencies in the pancakes
crate’s Cargo.toml. If you’re publishing your versions of hello_macro
and hello_macro_derive
to crates.io, they would be regular dependencies; if not, you can specify them as path
dependencies as follows:
hello_macro = { path = "../hello_macro" } hello_macro_derive = { path = "../hello_macro/hello_macro_derive" }
Put the code in Listing 19-30 into src/main.rs, and run cargo run
: it should print Hello, Macro! My name is Pancakes!
The implementation of the HelloMacro
trait from the procedural macro was included without the pancakes
crate needing to implement it; the #[derive(HelloMacro)]
added the trait implementation.
Next, let’s explore how the other kinds of procedural macros differ from custom derive macros.
Attribute-like macros are similar to custom derive macros, but instead of generating code for the derive
attribute, they allow you to create new attributes. They’re also more flexible: derive
only works for structs and enums; attributes can be applied to other items as well, such as functions. Here’s an example of using an attribute-like macro: say you have an attribute named route
that annotates functions when using a web application framework:
#[route(GET, "/")] fn index() {
This #[route]
attribute would be defined by the framework as a procedural macro. The signature of the macro definition function would look like this:
#[proc_macro_attribute] pub fn route(attr: TokenStream, item: TokenStream) -> TokenStream {
Here, we have two parameters of type TokenStream
. The first is for the contents of the attribute: the GET, "/"
part. The second is the body of the item the attribute is attached to: in this case, fn index() {}
and the rest of the function’s body.
Other than that, attribute-like macros work the same way as custom derive macros: you create a crate with the proc-macro
crate type and implement a function that generates the code you want!
Function-like macros
Function-like macros define macros that look like function calls. Similarly to macro_rules!
macros, they’re more flexible than functions; for example, they can take an unknown number of arguments. However, macro_rules!
macros can be defined only using the match-like syntax we discussed in the section earlier. Function-like macros take a TokenStream
parameter and their definition manipulates that TokenStream
using Rust code as the other two types of procedural macros do. An example of a function-like macro is an sql!
macro that might be called like so:
let sql = sql!(SELECT * FROM posts WHERE id=1);
This macro would parse the SQL statement inside it and check that it’s syntactically correct, which is much more complex processing than a macro_rules!
macro can do. The sql!
macro would be defined like this:
#[proc_macro] pub fn sql(input: TokenStream) -> TokenStream {
This definition is similar to the custom derive macro’s signature: we receive the tokens that are inside the parentheses and return the code we wanted to generate.
Whew! Now you have some Rust features in your toolbox that you won’t use often, but you’ll know they’re available in very particular circumstances. We’ve introduced several complex topics so that when you encounter them in error message suggestions or in other peoples’ code, you’ll be able to recognize these concepts and syntax. Use this chapter as a reference to guide you to solutions.
Next, we’ll put everything we’ve discussed throughout the book into practice and do one more project!