Keep in mind that Rust is a statically typed language, which means that it must know the types of all variables at compile time. The compiler can usually infer what type we want to use based on the value and how we use it. In cases when many types are possible, such as when we converted a to a numeric type using parse
in the section in Chapter 2, we must add a type annotation, like this:
If we don’t add the type annotation here, Rust will display the following error, which means the compiler needs more information from us to know which type we want to use:
$ cargo build Compiling no_type_annotations v0.1.0 (file:///projects/no_type_annotations) error[E0282]: type annotations needed --> src/main.rs:2:9 | 2 | let guess = "42".parse().expect("Not a number!"); | ^^^^^ consider giving `guess` a type error: aborting due to previous error For more information about this error, try `rustc --explain E0282`. error: could not compile `no_type_annotations` To learn more, run the command again with --verbose.
You’ll see different type annotations for other data types.
A scalar type represents a single value. Rust has four primary scalar types: integers, floating-point numbers, Booleans, and characters. You may recognize these from other programming languages. Let’s jump into how they work in Rust.
An integer is a number without a fractional component. We used one integer type in Chapter 2, the u32
type. This type declaration indicates that the value it’s associated with should be an unsigned integer (signed integer types start with i
, instead of u
) that takes up 32 bits of space. Table 3-1 shows the built-in integer types in Rust. Each variant in the Signed and Unsigned columns (for example, i16
) can be used to declare the type of an integer value.
Table 3-1: Integer Types in Rust
Each variant can be either signed or unsigned and has an explicit size. Signed and unsigned refer to whether it’s possible for the number to be negative—in other words, whether the number needs to have a sign with it (signed) or whether it will only ever be positive and can therefore be represented without a sign (unsigned). It’s like writing numbers on paper: when the sign matters, a number is shown with a plus sign or a minus sign; however, when it’s safe to assume the number is positive, it’s shown with no sign. Signed numbers are stored using two’s complement representation.
Each signed variant can store numbers from -(2n - 1) to 2n - 1 - 1 inclusive, where n is the number of bits that variant uses. So an i8
can store numbers from -(27) to 27 - 1, which equals -128 to 127. Unsigned variants can store numbers from 0 to 2n - 1, so a u8
can store numbers from 0 to 28 - 1, which equals 0 to 255.
Additionally, the isize
and usize
types depend on the kind of computer your program is running on: 64 bits if you’re on a 64-bit architecture and 32 bits if you’re on a 32-bit architecture.
You can write integer literals in any of the forms shown in Table 3-2. Note that number literals that can be multiple numeric types allow a type suffix, such as 57u8
, to designate the type. Number literals can also use _
as a visual separator to make the number easier to read, such as 1_000
, which will have the same value as if you had specified 1000
.
Table 3-2: Integer Literals in Rust
Number literals | Example |
---|---|
Decimal | 98_222 |
Hex | 0xff |
Octal | 0o77 |
Binary | 0b1111_0000 |
Byte (u8 only) | b’A’ |
So how do you know which type of integer to use? If you’re unsure, Rust’s defaults are generally good places to start: integer types default to i32
. The primary situation in which you’d use isize
or usize
is when indexing some sort of collection.
Floating-Point Types
Rust also has two primitive types for floating-point numbers, which are numbers with decimal points. Rust’s floating-point types are f32
and f64
, which are 32 bits and 64 bits in size, respectively. The default type is f64
because on modern CPUs it’s roughly the same speed as f32
but is capable of more precision.
Here’s an example that shows floating-point numbers in action:
fn main() {
let y: f32 = 3.0; // f32
}
Floating-point numbers are represented according to the IEEE-754 standard. The f32
type is a single-precision float, and f64
has double precision.
Numeric Operations
Rust supports the basic mathematical operations you’d expect for all of the number types: addition, subtraction, multiplication, division, and remainder. The following code shows how you’d use each one in a let
statement:
Filename: src/main.rs
fn main() {
// addition
let sum = 5 + 10;
let difference = 95.5 - 4.3;
// multiplication
let product = 4 * 30;
// division
let quotient = 56.7 / 32.2;
// remainder
let remainder = 43 % 5;
}
Each expression in these statements uses a mathematical operator and evaluates to a single value, which is then bound to a variable. contains a list of all operators that Rust provides.
As in most other programming languages, a Boolean type in Rust has two possible values: true
and false
. Booleans are one byte in size. The Boolean type in Rust is specified using bool
. For example:
Filename: src/main.rs
fn main() {
let t = true;
let f: bool = false; // with explicit type annotation
}
The main way to use Boolean values is through conditionals, such as an if
expression. We’ll cover how if
expressions work in Rust in the “Control Flow” section.
The Character Type
So far we’ve worked only with numbers, but Rust supports letters too. Rust’s char
type is the language’s most primitive alphabetic type, and the following code shows one way to use it. (Note that char
literals are specified with single quotes, as opposed to string literals, which use double quotes.)
Filename: src/main.rs
Rust’s char
type is four bytes in size and represents a Unicode Scalar Value, which means it can represent a lot more than just ASCII. Accented letters; Chinese, Japanese, and Korean characters; emoji; and zero-width spaces are all valid char
values in Rust. Unicode Scalar Values range from U+0000
to U+D7FF
and U+E000
to U+10FFFF
inclusive. However, a “character” isn’t really a concept in Unicode, so your human intuition for what a “character” is may not match up with what a char
is in Rust. We’ll discuss this topic in detail in in Chapter 8.
Compound types can group multiple values into one type. Rust has two primitive compound types: tuples and arrays.
A tuple is a general way of grouping together a number of values with a variety of types into one compound type. Tuples have a fixed length: once declared, they cannot grow or shrink in size.
We create a tuple by writing a comma-separated list of values inside parentheses. Each position in the tuple has a type, and the types of the different values in the tuple don’t have to be the same. We’ve added optional type annotations in this example:
Filename: src/main.rs
fn main() {
let tup: (i32, f64, u8) = (500, 6.4, 1);
}
The variable tup
binds to the entire tuple, because a tuple is considered a single compound element. To get the individual values out of a tuple, we can use pattern matching to destructure a tuple value, like this:
Filename: src/main.rs
fn main() {
let tup = (500, 6.4, 1);
let (x, y, z) = tup;
This program first creates a tuple and binds it to the variable tup
. It then uses a pattern with let
to take tup
and turn it into three separate variables, x
, y
, and z
. This is called destructuring, because it breaks the single tuple into three parts. Finally, the program prints the value of y
, which is 6.4
.
In addition to destructuring through pattern matching, we can access a tuple element directly by using a period (.
) followed by the index of the value we want to access. For example:
fn main() {
let x: (i32, f64, u8) = (500, 6.4, 1);
let five_hundred = x.0;
let six_point_four = x.1;
let one = x.2;
}
This program creates a tuple, x
, and then makes new variables for each element by using their respective indices. As with most programming languages, the first index in a tuple is 0.
Another way to have a collection of multiple values is with an array. Unlike a tuple, every element of an array must have the same type. Arrays in Rust are different from arrays in some other languages because arrays in Rust have a fixed length, like tuples.
In Rust, the values going into an array are written as a comma-separated list inside square brackets:
Filename: src/main.rs
Arrays are useful when you want your data allocated on the stack rather than the heap (we will discuss the stack and the heap more in Chapter 4) or when you want to ensure you always have a fixed number of elements. An array isn’t as flexible as the vector type, though. A vector is a similar collection type provided by the standard library that is allowed to grow or shrink in size. If you’re unsure whether to use an array or a vector, you should probably use a vector. Chapter 8 discusses vectors in more detail.
An example of when you might want to use an array rather than a vector is in a program that needs to know the names of the months of the year. It’s very unlikely that such a program will need to add or remove months, so you can use an array because you know it will always contain 12 elements:
#![allow(unused)]
fn main() {
let months = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];
}
You would write an array’s type by using square brackets, and within the brackets include the type of each element, a semicolon, and then the number of elements in the array, like so:
#![allow(unused)]
fn main() {
let a: [i32; 5] = [1, 2, 3, 4, 5];
}
Here, i32
is the type of each element. After the semicolon, the number 5
indicates the array contains five elements.
Writing an array’s type this way looks similar to an alternative syntax for initializing an array: if you want to create an array that contains the same value for each element, you can specify the initial value, followed by a semicolon, and then the length of the array in square brackets, as shown here:
#![allow(unused)]
fn main() {
let a = [3; 5];
}
The array named a
will contain 5
elements that will all be set to the value 3
initially. This is the same as writing let a = [3, 3, 3, 3, 3];
but in a more concise way.
An array is a single chunk of memory allocated on the stack. You can access elements of an array using indexing, like this:
Filename: src/main.rs
In this example, the variable named first
will get the value 1
, because that is the value at index [0]
in the array. The variable named second
will get the value 2
from index [1]
in the array.
What happens if you try to access an element of an array that is past the end of the array? Say you change the example to the following, which uses code similar to the guessing game in Chapter 2 to get an array index from the user:
Filename: src/main.rs
use std::io; fn main() { let a = [1, 2, 3, 4, 5]; println!("Please enter an array index."); let mut index = String::new(); io::stdin() .read_line(&mut index) .expect("Failed to read line"); let index: usize = index .trim() .parse() .expect("Index entered was not a number"); let element = a[index]; println!( "The value of the element at index {} is: {}", index, element ); }
This code compiles successfully. If you run this code using cargo run
and enter 0, 1, 2, 3, or 4, the program will print out the corresponding value at that index in the array. If you instead enter a number past the end of the array, such as 10, you’ll see output like this:
This is the first example of Rust’s safety principles in action. In many low-level languages, this kind of check is not done, and when you provide an incorrect index, invalid memory can be accessed. Rust protects you against this kind of error by immediately exiting instead of allowing the memory access and continuing. Chapter 9 discusses more of Rust’s error handling.