Let’s try calling panic! in a simple program:

    Filename: src/main.rs

    When you run the program, you’ll see something like this:

    $ cargo run Compiling panic v0.1.0 (file:///projects/panic) Finished dev [unoptimized + debuginfo] target(s) in 0.25s Running `target/debug/panic` thread 'main' panicked at 'crash and burn', src/main.rs:2:5 note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

    In this case, the line indicated is part of our code, and if we go to that line, we see the panic! macro call. In other cases, the panic! call might be in code that our code calls, and the filename and line number reported by the error message will be someone else’s code where the macro is called, not the line of our code that eventually led to the panic! call. We can use the backtrace of the functions the panic! call came from to figure out the part of our code that is causing the problem. We’ll discuss what a backtrace is in more detail next.

    Using a panic! Backtrace

    Let’s look at another example to see what it’s like when a panic! call comes from a library because of a bug in our code instead of from our code calling the macro directly. Listing 9-1 has some code that attempts to access an element by index in a vector.

    Filename: src/main.rs

    1. fn main() {
    2. }

    Listing 9-1: Attempting to access an element beyond the end of a vector, which will cause a call to panic!

    Here, we’re attempting to access the 100th element of our vector (which is at index 99 because indexing starts at zero), but it has only 3 elements. In this situation, Rust will panic. Using [] is supposed to return an element, but if you pass an invalid index, there’s no element that Rust could return here that would be correct.

    In C, attempting to read beyond the end of a data structure is undefined behavior. You might get whatever is at the location in memory that would correspond to that element in the data structure, even though the memory doesn’t belong to that structure. This is called a buffer overread and can lead to security vulnerabilities if an attacker is able to manipulate the index in such a way as to read data they shouldn’t be allowed to that is stored after the data structure.

    $ cargo run Compiling panic v0.1.0 (file:///projects/panic) Finished dev [unoptimized + debuginfo] target(s) in 0.27s Running `target/debug/panic` thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5 note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

    This error points at line 4 of our where we attempt to access index 99. The next note line tells us that we can set the RUST_BACKTRACE environment variable to get a backtrace of exactly what happened to cause the error. A backtrace is a list of all the functions that have been called to get to this point. Backtraces in Rust work as they do in other languages: the key to reading the backtrace is to start from the top and read until you see files you wrote. That’s the spot where the problem originated. The lines above the lines mentioning your files are code that your code called; the lines below are code that called your code. These lines might include core Rust code, standard library code, or crates that you’re using. Let’s try getting a backtrace by setting the RUST_BACKTRACE environment variable to any value except 0. Listing 9-2 shows output similar to what you’ll see.

    $ RUST_BACKTRACE=1 cargo run thread 'main' panicked at 'index out of bounds: the len is 3 but the index is 99', src/main.rs:4:5 stack backtrace: 0: rust_begin_unwind at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/std/src/panicking.rs:483 1: core::panicking::panic_fmt at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/panicking.rs:85 2: core::panicking::panic_bounds_check at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/panicking.rs:62 3: <usize as core::slice::index::SliceIndex<[T]>>::index at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/slice/index.rs:255 4: core::slice::index::<impl core::ops::index::Index<I> for [T]>::index at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/slice/index.rs:15 5: <alloc::vec::Vec<T> as core::ops::index::Index<I>>::index at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/alloc/src/vec.rs:1982 6: panic::main at ./src/main.rs:4 7: core::ops::function::FnOnce::call_once at /rustc/7eac88abb2e57e752f3302f02be5f3ce3d7adfb4/library/core/src/ops/function.rs:227 note: Some details are omitted, run with `RUST_BACKTRACE=full` for a verbose backtrace.

    Listing 9-2: The backtrace generated by a call to panic! displayed when the environment variable RUST_BACKTRACE is set

    That’s a lot of output! The exact output you see might be different depending on your operating system and Rust version. In order to get backtraces with this information, debug symbols must be enabled. Debug symbols are enabled by default when using cargo build or cargo run without the --release flag, as we have here.

    In the output in Listing 9-2, line 6 of the backtrace points to the line in our project that’s causing the problem: line 4 of src/main.rs. If we don’t want our program to panic, the location pointed to by the first line mentioning a file we wrote is where we should start investigating. In Listing 9-1, where we deliberately wrote code that would panic in order to demonstrate how to use backtraces, the way to fix the panic is to not request an element at index 99 from a vector that only contains 3 items. When your code panics in the future, you’ll need to figure out what action the code is taking with what values to cause the panic and what the code should do instead.