Installing a cluster on AWS into a government or secret region
You reviewed details about the OKD installation and update processes.
You read the documentation on .
You configured an AWS account to host the cluster.
If you use a firewall, you that your cluster requires access to.
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the
kube-system
namespace, you can manually create and maintain IAM credentials.
AWS government and secret regions
OKD supports deploying a cluster to AWS GovCloud (US) regions and the . These regions are specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads in the cloud.
These regions do not have published Fedora CoreOS (FCOS) Amazon Machine Images (AMI) to select, so you must upload a custom AMI that belongs to that region.
The following AWS GovCloud partitions are supported:
us-gov-west-1
us-gov-east-1
The following AWS Secret Region partition is supported:
us-iso-east-1
The AWS government or secret region, and accompanying custom AMI, must be manually configured in the install-config.yaml
file since FCOS AMIs are not provided by Red Hat for those regions.
If you are deploying to the C2S Secret Region, you must also define a custom CA certificate in the |
Private clusters
You can deploy a private OKD cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.
Public zones are not supported in Route 53 in AWS GovCloud or Secret Regions. Therefore, clusters must be private if they are deployed to an AWS government or secret region. |
By default, OKD is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
To create a private cluster on Amazon Web Services (AWS), you must provide an existing private VPC and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for access from only the private network.
The cluster still requires access to internet to access the AWS APIs.
The following items are not required or created when you install a private cluster:
Public subnets
Public load balancers, which support public ingress
A public Route 53 zone that matches the
baseDomain
for the cluster
The installation program does use the baseDomain
that you specify to create a private Route 53 zone and the required records for the cluster. The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
Limitations
The ability to add public functionality to a private cluster is limited.
You cannot make the Kubernetes API endpoints public after installation without taking additional actions, including creating public subnets in the VPC for each availability zone in use, creating a public load balancer, and configuring the control plane security groups to allow traffic from the internet on 6443 (Kubernetes API port).
If you use a public Service type load balancer, you must tag a public subnet in each availability zone with
kubernetes.io/cluster/<cluster-infra-id>: shared
so that AWS can use them to create public load balancers.
About using a custom VPC
In OKD 4.8, you can deploy a cluster into existing subnets in an existing Amazon Virtual Private Cloud (VPC) in Amazon Web Services (AWS). By deploying OKD into an existing AWS VPC, you might be able to avoid limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. If you cannot obtain the infrastructure creation permissions that are required to create the VPC yourself, use this installation option.
Because the installation program cannot know what other components are also in your existing subnets, it cannot choose subnet CIDRs and so forth on your behalf. You must configure networking for the subnets that you install your cluster to yourself.
Requirements for using your VPC
The installation program no longer creates the following components:
Internet gateways
NAT gateways
Subnets
Route tables
VPCs
VPC DHCP options
VPC endpoints
If you use a custom VPC, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VPC options like DHCP, so you must do so before you install the cluster.
Your VPC must meet the following characteristics:
The VPC’s CIDR block must contain the
Networking.MachineCIDR
range, which is the IP address pool for cluster machines.The VPC must not use the
kubernetes.io/cluster/.*: owned
tag.You must enable the
enableDnsSupport
andenableDnsHostnames
attributes in your VPC so that the cluster can use the Route 53 zones that are attached to the VPC to resolve cluster’s internal DNS records. See in the AWS documentation. If you prefer using your own Route 53 hosted private zone, you must associate the existing hosted zone with your VPC prior to installing a cluster. You can define your hosted zone using theplatform.aws.hostedZone
field in theinstall-config.yaml
file.
If you use a cluster with public access, you must create a public and a private subnet for each availability zone that your cluster uses.
The installation program modifies your subnets to add the kubernetes.io/cluster/.*: shared
tag, so your subnets must have at least one free tag slot available for it. Review the current Tag Restrictions in the AWS documentation to ensure that the installation program can add a tag to each subnet that you specify.
If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2 and ELB endpoints. To resolve this, you must create a VPC endpoint and attach it to the subnet that the clusters are using. The endpoints should be named as follows:
ec2.<region>.amazonaws.com
elasticloadbalancing.<region>.amazonaws.com
s3.<region>.amazonaws.com
Required VPC components
You must provide a suitable VPC and subnets that allow communication to your machines.
Component | AWS type | Description | |
---|---|---|---|
VPC |
| You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3. | |
Public subnets |
| Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules. | |
Internet gateway |
| You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios. | |
Network access control |
| You must allow the VPC to access the following ports: | |
Port | Reason | ||
| Inbound HTTP traffic | ||
| Inbound HTTPS traffic | ||
| Inbound SSH traffic | ||
| Inbound ephemeral traffic | ||
| Outbound ephemeral traffic | ||
Private subnets |
| Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them. |
VPC validation
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
All the subnets that you specify exist.
You provide private subnets.
The subnet CIDRs belong to the machine CIDR that you specified.
You provide subnets for each availability zone. Each availability zone contains no more than one public and one private subnet. If you use a private cluster, provide only a private subnet for each availability zone. Otherwise, provide exactly one public and private subnet for each availability zone.
You provide a public subnet for each private subnet availability zone. Machines are not provisioned in availability zones that you do not provide private subnets for.
If you destroy a cluster that uses an existing VPC, the VPC is not deleted. When you remove the OKD cluster from a VPC, the kubernetes.io/cluster/.*: shared
tag is removed from the subnets that it used.
Division of permissions
Starting with OKD 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resource in your clouds than others. For example, you might be able to create application-specific items, like instances, buckets, and load balancers, but not networking-related components such as VPCs, subnets, or ingress rules.
The AWS credentials that you use when you create your cluster do not need the networking permissions that are required to make VPCs and core networking components within the VPC, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as ELBs, security groups, S3 buckets, and nodes.
If you deploy OKD to an existing network, the isolation of cluster services is reduced in the following ways:
You can install multiple OKD clusters in the same VPC.
ICMP ingress is allowed from the entire network.
TCP 22 ingress (SSH) is allowed to the entire network.
Control plane TCP 6443 ingress (Kubernetes API) is allowed to the entire network.
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as . |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
1 Specify the path and file name, such as ~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.If you plan to install an OKD cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_rsa.pub
public key:$ cat ~/.ssh/id_rsa.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.On some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> (1)
1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
- When you install OKD, provide the SSH public key to the installation program.
Obtaining the installation program
Before you install OKD, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
Download installer from
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager site is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use
{"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.If you do not use the pull secret from the Red Hat OpenShift Cluster Manager site:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the registry, such as image streams and Operators, are not available.
Manually creating the installation configuration file
When installing OKD on Amazon Web Services (AWS) into a region requiring a custom Fedora CoreOS (FCOS) AMI, you must manually generate your installation configuration file.
Prerequisites
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.
Customize the sample
install-config.yaml
file template that is provided and save it in the<installation_directory>
.You must name this configuration file
install-config.yaml
.For some platform types, you can alternatively run
./openshift-install create install-config —dir=<installation_directory>
to generate aninstall-config.yaml
file. You can provide details about your cluster configuration at the prompts.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.The
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
Installation configuration parameters
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
The |
Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The API version for the | String |
| The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the | A fully-qualified domain or subdomain name, such as |
| Kubernetes resource | Object |
| The name of the cluster. DNS records for the cluster are all subdomains of | String of lowercase letters, hyphens ( |
| The configuration for the specific platform upon which to perform the installation: | Object |
Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values | ||
---|---|---|---|---|
| The configuration for the cluster network. | Object
| ||
| The cluster network provider Container Network Interface (CNI) plug-in to install. | Either | ||
| The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example:
| ||
| Required if you use An IPv4 network. | An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between | ||
| The subnet prefix length to assign to each individual node. For example, if | A subnet prefix. The default value is | ||
| The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example:
| ||
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example:
| ||
| Required if you use | An IP network block in CIDR notation. For example,
|
Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes’ trusted certificate store. This trust bundle may also be used when a proxy has been configured. | |||
| The configuration for the machines that comprise the compute nodes. | Array of | ||
| Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String | ||
| Whether to enable or disable simultaneous multithreading, or
|
| ||
| Required if you use |
| ||
| Required if you use |
| ||
| The number of compute machines, which are also known as worker machines, to provision. | A positive integer greater than or equal to | ||
| The configuration for the machines that comprise the control plane. | Array of | ||
| Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String | ||
| Whether to enable or disable simultaneous multithreading, or
|
| ||
| Required if you use |
| ||
| Required if you use |
| ||
| The number of control plane machines to provision. | The only supported value is | ||
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
|
| ||
| Sources and repositories for the release-image content. | Array of objects. Includes a | ||
| Required if you use | String | ||
| Specify one or more repositories that may also contain the same images. | Array of strings | ||
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
| ||
| The SSH key or keys to authenticate access your cluster machines.
| One or more keys. For example:
|
Optional AWS configuration parameters
Optional AWS configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The AWS AMI used to boot compute machines for the cluster. This is required for regions that require a custom FCOS AMI. | Any published or custom FCOS AMI that belongs to the set AWS region. |
| A pre-existing AWS IAM role applied to the compute machine pool instance profiles. You can use these fields to match naming schemes and include predefined permissions boundaries for your IAM roles. If undefined, the installation program creates a new IAM role. | The name of a valid AWS IAM role. |
| The Input/Output Operations Per Second (IOPS) that is reserved for the root volume. | Integer, for example |
| The size in GiB of the root volume. | Integer, for example |
| The type of the root volume. | Valid AWS EBS volume type, such as |
| The EC2 instance type for the compute machines. | Valid AWS instance type, such as |
| The availability zones where the installation program creates machines for the compute machine pool. If you provide your own VPC, you must provide a subnet in that availability zone. | A list of valid AWS availability zones, such as |
| The AWS region that the installation program creates compute resources in. | Any valid AWS region, such as |
| The AWS AMI used to boot control plane machines for the cluster. This is required for regions that require a custom FCOS AMI. | Any published or custom FCOS AMI that belongs to the set AWS region. |
| A pre-existing AWS IAM role applied to the control plane machine pool instance profiles. You can use these fields to match naming schemes and include predefined permissions boundaries for your IAM roles. If undefined, the installation program creates a new IAM role. | The name of a valid AWS IAM role. |
| The EC2 instance type for the control plane machines. | Valid AWS instance type, such as |
| The availability zones where the installation program creates machines for the control plane machine pool. | A list of valid AWS availability zones, such as |
| The AWS region that the installation program creates control plane resources in. | Valid AWS region, such as |
| The AWS AMI used to boot all machines for the cluster. If set, the AMI must belong to the same region as the cluster. This is required for regions that require a custom FCOS AMI. | Any published or custom FCOS AMI that belongs to the set AWS region. |
| An existing Route 53 private hosted zone for the cluster. You can only use a pre-existing hosted zone when also supplying your own VPC. The hosted zone must already be associated with the user-provided VPC before installation. Also, the domain of the hosted zone must be the cluster domain or a parent of the cluster domain. If undefined, the installation program creates a new hosted zone. | String, for example |
| The AWS service endpoint name. Custom endpoints are only required for cases where alternative AWS endpoints, like FIPS, must be used. Custom API endpoints can be specified for EC2, S3, IAM, Elastic Load Balancing, Tagging, Route 53, and STS AWS services. | Valid name. |
| The AWS service endpoint URL. The URL must use the | Valid AWS service endpoint URL. |
| A map of keys and values that the installation program adds as tags to all resources that it creates. | Any valid YAML map, such as key value pairs in the |
| If you provide the VPC instead of allowing the installation program to create the VPC for you, specify the subnet for the cluster to use. The subnet must be part of the same | Valid subnet IDs. |
Supported AWS machine types
The following Amazon Web Services (AWS) instance types are supported with OKD.
Instance types for machines
Instance type | Bootstrap | Control plane | Compute |
---|---|---|---|
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
x | x | ||
| x | x | |
| x | ||
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | x | |
| x | ||
| x | ||
| x | ||
| x | ||
| x | ||
| x |
Sample customized install-config.yaml
file for AWS
You can customize the install-config.yaml
file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your |
1 | Required. | ||
2 | Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode, instead of having the CCO dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. | ||
3 | If you do not provide these parameters and values, the installation program provides the default value. | ||
4 | The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, - , and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OKD will support defining multiple compute pools during installation. Only one control plane pool is used. | ||
5 | Whether to enable or disable simultaneous multithreading, or hyperthreading . By default, simultaneous multithreading is enabled to increase the performance of your machines’ cores. You can disable it by setting the parameter value to Disabled . If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
| ||
6 | To configure faster storage for etcd, especially for larger clusters, set the storage type as io1 and set iops to 2000 . | ||
7 | If you provide your own VPC, specify subnets for each availability zone that your cluster uses. | ||
8 | The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster. | ||
9 | The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the https protocol and the host must trust the certificate. | ||
10 | The ID of your existing Route 53 private hosted zone. Providing an existing hosted zone requires that you supply your own VPC and the hosted zone is already associated with the VPC prior to installing your cluster. If undefined, the installation program creates a new hosted zone. | ||
11 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
| ||
12 | How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External . | ||
13 | The custom CA certificate. This is required when deploying to the AWS C2S Secret Region because the AWS API requires a custom CA trust bundle. |
You can deploy an OKD cluster to Amazon Web Services (AWS) regions without native support for a Fedora CoreOS (FCOS) Amazon Machine Image (AMI) or the AWS software development kit (SDK). If a published AMI is not available for an AWS region, you can upload a custom AMI prior to installing the cluster. This is required if you are deploying your cluster to an AWS government or secret region. AWS government and secret regions are supported by the AWS SDK.
If you are deploying to a region not supported by the AWS SDK and you do not specify a custom AMI, the installation program copies the AMI to the user account automatically. Then the installation program creates the control plane machines with encrypted EBS volumes using the default or user-specified Key Management Service (KMS) key. This allows the AMI to follow the same process workflow as published FCOS AMIs.
A region without native support for an FCOS AMI is not available to select from the terminal during cluster creation because it is not published. However, you can install to this region by configuring the custom AMI in the install-config.yaml
file.
Uploading a custom FCOS AMI in AWS
If you are deploying to a custom Amazon Web Services (AWS) region, you must upload a custom Fedora CoreOS (FCOS) Amazon Machine Image (AMI) that belongs to that region.
Prerequisites
You configured an AWS account.
You created an Amazon S3 bucket with the required IAM .
You uploaded your FCOS VMDK file to Amazon S3.
You downloaded the AWS CLI and installed it on your computer. See Install the AWS CLI Using the Bundled Installer.
Procedure
Export your AWS profile as an environment variable:
$ export AWS_PROFILE=<aws_profile> (1)
1 The AWS profile name that holds your AWS credentials, like govcloud
.Export the region to associate with your custom AMI as an environment variable:
$ export AWS_DEFAULT_REGION=<aws_region> (1)
Export the version of FCOS you uploaded to Amazon S3 as an environment variable:
$ export RHCOS_VERSION=<version> (1)
1 The FCOS VMDK version, like 4.8.0
.Export the Amazon S3 bucket name as an environment variable:
$ export VMIMPORT_BUCKET_NAME=<s3_bucket_name>
Create the
containers.json
file and define your FCOS VMDK file:$ cat <<EOF > containers.json
{
"Description": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64",
"Format": "vmdk",
"UserBucket": {
"S3Bucket": "${VMIMPORT_BUCKET_NAME}",
"S3Key": "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64.vmdk"
}
}
EOF
Import the FCOS disk as an Amazon EBS snapshot:
$ aws ec2 import-snapshot --region ${AWS_DEFAULT_REGION} \
--description "<description>" \ (1)
--disk-container "file://<file_path>/containers.json" (2)
1 The description of your FCOS disk being imported, like rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64
.2 The file path to the JSON file describing your FCOS disk. The JSON file should contain your Amazon S3 bucket name and key. Check the status of the image import:
$ watch -n 5 aws ec2 describe-import-snapshot-tasks --region ${AWS_DEFAULT_REGION}
Example output
{
"ImportSnapshotTasks": [
{
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"ImportTaskId": "import-snap-fh6i8uil",
"SnapshotTaskDetail": {
"Description": "rhcos-4.7.0-x86_64-aws.x86_64",
"DiskImageSize": 819056640.0,
"Format": "VMDK",
"SnapshotId": "snap-06331325870076318",
"Status": "completed",
"UserBucket": {
"S3Bucket": "external-images",
}
}
}
]
}
Copy the
SnapshotId
to register the image.Create a custom FCOS AMI from the FCOS snapshot:
$ aws ec2 register-image \
--region ${AWS_DEFAULT_REGION} \
--architecture x86_64 \ (1)
--description "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (2)
--ena-support \
--name "rhcos-${RHCOS_VERSION}-x86_64-aws.x86_64" \ (3)
--virtualization-type hvm \
--root-device-name '/dev/xvda' \
--block-device-mappings 'DeviceName=/dev/xvda,Ebs={DeleteOnTermination=true,SnapshotId=<snapshot_ID>}' (4)
1 The FCOS VMDK architecture type, like x86_64
,s390x
, orppc64le
.2 The Description
from the imported snapshot.3 The name of the FCOS AMI. 4 The SnapshotID
from the imported snapshot.
To learn more about these APIs, see the AWS documentation for and creating EBS-backed AMIs.
Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
You have an existing
install-config.yaml
file.You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.The
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).If your cluster is on AWS, you added the
ec2.<region>.amazonaws.com
,elasticloadbalancing.<region>.amazonaws.com
, ands3.<region>.amazonaws.com
endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
...
1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http
. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpProxy
value.2 A proxy URL to use for creating HTTPS connections outside the cluster. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify an httpsProxy
value.3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with .
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations.4 If provided, the installation program generates a config map that is named user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in thetrustedCA
field of theProxy
object. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must provide the MITM CA certificate.The installation program does not support the proxy
readinessEndpoints
field.Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the |
Deploying the cluster
You can install OKD on a compatible cloud platform.
You can run the |
Prerequisites
Configure an account with the cloud platform that hosts your cluster.
Obtain the OKD installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir=<installation_directory> \ (1)
--log-level=info (2)
1 For <installation_directory>
, specify the location of your customized./install-config.yaml
file.2 To view different installation details, specify warn
,debug
, orerror
instead ofinfo
.If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s
The cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
Optional: Remove or disable the
AdministratorAccess
policy from the IAM account that you used to install the cluster.The elevated permissions provided by the
AdministratorAccess
policy are required only during installation.
You can install the OpenShift CLI (oc
) to interact with OKD from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack the archive:
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
Navigate to and choose the folder for your operating system and architecture.
Download
oc.zip
.Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
Navigate to and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.
Prerequisites
You deployed an OKD cluster.
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 For <installation_directory>
, specify the path to the directory that you stored the installation files in.Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Logging in to the cluster by using the web console
The kubeadmin
user exists by default after an OKD installation. You can log into your cluster as the kubeadmin
user by using the OKD web console.
Prerequisites
You have access to the installation host.
You completed a cluster installation and all cluster Operators are available.
Procedure
Obtain the password for the
kubeadmin
user from thekubeadmin-password
file on the installation host:$ cat <installation_directory>/auth/kubeadmin-password
Alternatively, you can obtain the
kubeadmin
password from the<installation_directory>/.openshift_install.log
log file on the installation host.List the OKD web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
Example output
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the user.
Additional resources
- See Accessing the web console for more details about accessing and understanding the OKD web console.
Additional resources
- See for more information about the Telemetry service.
Next steps
.
If necessary, you can .
If necessary, you can remove cloud provider credentials.