Automatically scaling pods with the horizontal pod autoscaler
You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you want to run, as well as the CPU utilization or memory utilization your pods should target.
After you create a horizontal pod autoscaler, OKD begins to query the CPU and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two minutes before metrics become available.
For replication controllers, this scaling corresponds directly to the replicas of the replication controller. For deployment configurations, scaling corresponds directly to the replica count of the deployment configuration. Note that autoscaling applies only to the latest deployment in the phase.
OKD automatically accounts for resources and prevents unnecessary autoscaling during resource spikes, such as during start up. Pods in the unready
state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known metrics have 0% CPU
usage when scaling up and 100% CPU
when scaling down. This allows for more stability during the HPA decision. To use this feature, you must configure readiness checks to determine if a new pod is ready for use.
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics.
The following metrics are supported by horizontal pod autoscalers:
For memory-based autoscaling, memory usage must increase and decrease proportionally to the replica count. On average:
Use the OKD web console to check the memory behavior of your application and ensure that your application meets these requirements before using memory-based autoscaling. |
The following example shows autoscaling for the image-registry
DeploymentConfig
object. The initial deployment requires 3 pods. The HPA object increased that minimum to 5 and will increase the pods up to 7 if CPU usage on the pods reaches 75%:
Example output
horizontalpodautoscaler.autoscaling/image-registry autoscaled
Sample HPA for the image-registry
DeploymentConfig
object with minReplicas
set to 3
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
name: image-registry
namespace: default
spec:
maxReplicas: 7
minReplicas: 3
scaleTargetRef:
apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
name: image-registry
targetCPUUtilizationPercentage: 75
status:
currentReplicas: 5
desiredReplicas: 0
View the new state of the deployment:
$ oc get dc image-registry
There are now 5 pods in the deployment:
Example output
NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 5 5 config
The autoscaling/v2beta2
API allows you to add scaling policies to a horizontal pod autoscaler. A scaling policy controls how the OKD horizontal pod autoscaler (HPA) scales pods. Scaling policies allow you to restrict the rate that HPAs scale pods up or down by setting a specific number or specific percentage to scale in a specified period of time. You can also define a stabilization window, which uses previously computed desired states to control scaling if the metrics are fluctuating. You can create multiple policies for the same scaling direction, and determine which policy is used, based on the amount of change. You can also restrict the scaling by timed iterations. The HPA scales pods during an iteration, then performs scaling, as needed, in further iterations.
Sample HPA object with a scaling policy
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: hpa-resource-metrics-memory
namespace: default
spec:
behavior:
scaleDown: (1)
policies: (2)
- type: Pods (3)
value: 4 (4)
periodSeconds: 60 (5)
- type: Percent
value: 10 (6)
periodSeconds: 60
selectPolicy: Min (7)
stabilizationWindowSeconds: 300 (8)
scaleUp: (9)
policies:
- type: Pods
value: 5 (10)
periodSeconds: 70
- type: Percent
value: 12 (11)
periodSeconds: 80
selectPolicy: Max
stabilizationWindowSeconds: 0
...
1 | Specifies the direction for the scaling policy, either scaleDown or scaleUp . This example creates a policy for scaling down. |
2 | Defines the scaling policy. |
3 | Determines if the policy scales by a specific number of pods or a percentage of pods during each iteration. The default value is pods . |
4 | Determines the amount of scaling, either the number of pods or percentage of pods, during each iteration. There is no default value for scaling down by number of pods. |
5 | Determines the length of a scaling iteration. The default value is 15 seconds. |
6 | The default value for scaling down by percentage is 100%. |
7 | Determines which policy to use first, if multiple policies are defined. Specify Max to use the policy that allows the highest amount of change, Min to use the policy that allows the lowest amount of change, or Disabled to prevent the HPA from scaling in that policy direction. The default value is Max . |
8 | Determines the time period the HPA should look back at desired states. The default value is 0 . |
9 | This example creates a policy for scaling up. |
10 | The amount of scaling up by the number of pods. The default value for scaling up the number of pods is 4%. |
11 | The amount of scaling up by the percentage of pods. The default value for scaling up by percentage is 100%. |
Example policy for scaling down
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: hpa-resource-metrics-memory
namespace: default
spec:
...
minReplicas: 20
...
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Pods
value: 4
periodSeconds: 30
- type: Percent
value: 10
periodSeconds: 60
selectPolicy: Max
scaleUp:
selectPolicy: Disabled
In this example, when the number of pods is greater than 40, the percent-based policy is used for scaling down, as that policy results in a larger change, as required by the selectPolicy
.
If there are 80 pod replicas, in the first iteration the HPA reduces the pods by 8, which is 10% of the 80 pods (based on the type: Percent
and value: 10
parameters), over one minute (periodSeconds: 60
). For the next iteration, the number of pods is 72. The HPA calculates that 10% of the remaining pods is 7.2, which it rounds up to 8 and scales down 8 pods. On each subsequent iteration, the number of pods to be scaled is re-calculated based on the number of remaining pods. When the number of pods falls below 40, the pods-based policy is applied, because the pod-based number is greater than the percent-based number. The HPA reduces 4 pods at a time (type: Pods
and value: 4
), over 30 seconds (periodSeconds: 30
), until there are 20 replicas remaining (minReplicas
).
The selectPolicy: Disabled
parameter prevents the HPA from scaling up the pods. You can manually scale up by adjusting the number of replicas in the replica set or deployment set, if needed.
If set, you can view the scaling policy by using the oc edit
command:
$ oc edit hpa hpa-resource-metrics-memory
Example output
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
annotations:
autoscaling.alpha.kubernetes.io/behavior:\
'{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\
"ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}'
...
Creating a horizontal pod autoscaler by using the web console
From the web console, you can create a horizontal pod autoscaler (HPA) that specifies the minimum and maximum number of pods you want to run on a deployment. You can also define the amount of CPU or memory usage that your pods should target..
An HPA cannot be added to deployments that are part of an Operator-backed service, Knative service, or Helm chart. |
Procedure
To create an HPA in the web console:
In the Topology view, click the node to reveal the side pane.
From the Actions drop-down list, select Add HorizontalPodAutoscaler to open the Add HorizontalPodAutoscaler form.
Figure 1. Add HorizontalPodAutoscaler
From the Add HorizontalPodAutoscaler form, define the name, minimum and maximum pod limits, the CPU and memory usage, and click Save.
To edit an HPA in the web console:
In the Topology view, click the node to reveal the side pane.
From the Actions drop-down list, select Edit HorizontalPodAutoscaler to open the Edit Horizontal Pod Autoscaler form.
From the Edit Horizontal Pod Autoscaler form, edit the minimum and maximum pod limits and the CPU and memory usage, and click Save.
While creating or editing the horizontal pod autoscaler in the web console, you can switch from Form view to YAML view. |
To remove an HPA in the web console:
In the Topology view, click the node to reveal the side panel.
From the Actions drop-down list, select Remove HorizontalPodAutoscaler.
In the confirmation pop-up window, click Remove to remove the HPA.
You can create a horizontal pod autoscaler (HPA) for an existing Deployment
, DeploymentConfig
, ReplicaSet
, ReplicationController
, or StatefulSet
object that automatically scales the pods associated with that object to maintain the CPU usage you specify.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified CPU utilization across all pods.
When autoscaling for CPU utilization, you can use the oc autoscale
command and specify the minimum and maximum number of pods you want to run at any given time and the average CPU utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OKD server. To autoscale for a specific CPU value, create a HorizontalPodAutoscaler
object with the target CPU and pod limits.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
Name: wait-for-host-port
Usage:
Memory: 0
Name: scheduler
Usage:
Cpu: 8m
Memory: 45440Ki
Kind: PodMetrics
Metadata:
Creation Timestamp: 2019-05-23T18:47:56Z
Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Events: <none>
Procedure
To create a horizontal pod autoscaler for CPU utilization:
Perform one of the following one of the following:
To scale based on the percent of CPU utilization, create a object for an existing object:
$ oc autoscale <object_type>/<name> \(1)
--min <number> \(2)
--max <number> \(3)
--cpu-percent=<percent> (4)
1 Specify the type and name of the object to autoscale. The object must exist and be a Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
.2 Optionally, specify the minimum number of replicas when scaling down. 3 Specify the maximum number of replicas when scaling up. 4 Specify the target average CPU utilization over all the pods, represented as a percent of requested CPU. If not specified or negative, a default autoscaling policy is used. For example, the following command shows autoscaling for the
image-registry
DeploymentConfig
object. The initial deployment requires 3 pods. The HPA object increased that minimum to 5 and will increase the pods up to 7 if CPU usage on the pods reaches 75%:To scale for a specific CPU value, create a YAML file similar to the following for an existing object:
Create a YAML file similar to the following:
apiVersion: autoscaling/v2beta2 (1)
kind: HorizontalPodAutoscaler
metadata:
name: cpu-autoscale (2)
namespace: default
spec:
scaleTargetRef:
apiVersion: v1 (3)
kind: ReplicaSet (4)
name: example (5)
minReplicas: 1 (6)
maxReplicas: 10 (7)
metrics: (8)
- type: Resource
resource:
name: cpu (9)
target:
type: AverageValue (10)
averageValue: 500m (11)
1 Use the autoscaling/v2beta2
API.2 Specify a name for this horizontal pod autoscaler object. 3 Specify the API version of the object to scale: For a
ReplicationController
, usev1
.For a
DeploymentConfig
, useapps.openshift.io/v1
.For a
Deployment
,ReplicaSet
,Statefulset
object, useapps/v1
.
4 Specify the type of object. The object must be a Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
.5 Specify the name of the object to scale. The object must exist. 6 Specify the minimum number of replicas when scaling down. 7 Specify the maximum number of replicas when scaling up. 8 Use the metrics
parameter for memory utilization.9 Specify cpu
for CPU utilization.10 Set to AverageValue
.11 Set to averageValue
with the targeted CPU value.Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
Verify that the horizontal pod autoscaler was created:
$ oc get hpa cpu-autoscale
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
cpu-autoscale ReplicationController/example 173m/500m 1 10 1 20m
Creating a horizontal pod autoscaler object for memory utilization by using the CLI
You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig
object or ReplicationController
object that automatically scales the pods associated with that object to maintain the average memory utilization you specify, either a direct value or a percentage of requested memory.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified memory utilization across all pods.
For memory utilization, you can specify the minimum and maximum number of pods and the average memory utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OKD server.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler
Example output
Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
Name: scheduler
Usage:
Cpu: 2m
Memory: 41056Ki
Name: wait-for-host-port
Usage:
Memory: 0
Kind: PodMetrics
Metadata:
Creation Timestamp: 2020-02-14T22:21:14Z
Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp: 2020-02-14T22:21:14Z
Window: 5m0s
Events: <none>
Procedure
To create a horizontal pod autoscaler for memory utilization:
Create a YAML file for one of the following:
To scale for a specific memory value, create a
HorizontalPodAutoscaler
object similar to the following for an existingReplicationController
object or replication controller:Example output
apiVersion: autoscaling/v2beta2 (1)
kind: HorizontalPodAutoscaler
metadata:
name: hpa-resource-metrics-memory (2)
namespace: default
spec:
scaleTargetRef:
apiVersion: v1 (3)
kind: ReplicationController (4)
name: example (5)
minReplicas: 1 (6)
maxReplicas: 10 (7)
metrics: (8)
- type: Resource
resource:
name: memory (9)
target:
type: AverageValue (10)
averageValue: 500Mi (11)
behavior: (12)
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Pods
value: 4
periodSeconds: 60
- type: Percent
value: 10
periodSeconds: 60
selectPolicy: Max
To scale for a percentage, create a
HorizontalPodAutoscaler
object similar to the following:Example output
apiVersion: autoscaling/v2beta2 (1)
kind: HorizontalPodAutoscaler
metadata:
name: memory-autoscale (2)
namespace: default
spec:
scaleTargetRef:
apiVersion: apps.openshift.io/v1 (3)
kind: DeploymentConfig (4)
name: example (5)
minReplicas: 1 (6)
maxReplicas: 10 (7)
metrics: (8)
- type: Resource
resource:
target:
type: Utilization (10)
averageUtilization: 50 (11)
behavior: (12)
scaleUp:
stabilizationWindowSeconds: 180
policies:
- type: Pods
value: 6
periodSeconds: 120
value: 10
periodSeconds: 120
selectPolicy: Max
1 Use the autoscaling/v2beta2
API.2 Specify a name for this horizontal pod autoscaler object. 3 Specify the API version of the object to scale: For a replication controller, use
v1
,For a
DeploymentConfig
object, useapps.openshift.io/v1
.
4 Specify the kind of object to scale, either ReplicationController
orDeploymentConfig
.5 Specify the name of the object to scale. The object must exist. 6 Specify the minimum number of replicas when scaling down. 7 Specify the maximum number of replicas when scaling up. 8 Use the metrics
parameter for memory utilization.9 Specify memory
for memory utilization.10 Set to Utilization
.11 Specify averageUtilization
and a target average memory utilization over all the pods, represented as a percent of requested memory. The target pods must have memory requests configured.12 Optional: Specify a scaling policy to control the rate of scaling up or down.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
For example:
$ oc create -f hpa.yaml
Example output
horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created
Verify that the horizontal pod autoscaler was created:
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-resource-metrics-memory ReplicationController/example 2441216/500Mi 1 10 1 20m
$ oc describe hpa hpa-resource-metrics-memory
Example output
Name: hpa-resource-metrics-memory
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530
Reference: ReplicationController/example
Metrics: ( current / target )
resource memory on pods: 2441216 / 500Mi
Min replicas: 1
Max replicas: 10
ReplicationController pods: 1 current / 1 desired
Conditions:
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale recommended size matches current size
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from memory resource
ScalingLimited False DesiredWithinRange the desired count is within the acceptable range
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1; reason: All metrics below target
You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA) is able to scale and whether or not it is currently restricted in any way.
The HPA status conditions are available with the v2beta1
version of the autoscaling API.
The HPA responds with the following status conditions:
The
AbleToScale
condition indicates whether HPA is able to fetch and update metrics, as well as whether any backoff-related conditions could prevent scaling.A
True
condition indicates scaling is allowed.A
False
condition indicates scaling is not allowed for the reason specified.
The
ScalingActive
condition indicates whether the HPA is enabled (for example, the replica count of the target is not zero) and is able to calculate desired metrics.A
True
condition indicates metrics is working properly.A
False
condition generally indicates a problem with fetching metrics.
The
ScalingLimited
condition indicates that the desired scale was capped by the maximum or minimum of the horizontal pod autoscaler.A
True
condition indicates that you need to raise or lower the minimum or maximum replica count in order to scale.A
False
condition indicates that the requested scaling is allowed.$ oc describe hpa cm-test
Example output
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: ( current / target )
"http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: (1)
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
Events:
1 The horizontal pod autoscaler status messages.
The following is an example of a pod that is unable to scale:
Example output
Conditions:
Type Status Reason Message
---- ------ ------ -------
AbleToScale False FailedGetScale the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps"
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind "ReplicationController" in group "apps"
The following is an example of a pod that could not obtain the needed metrics for scaling:
Example output
Conditions:
Type Status Reason Message
---- ------ ------ -------
AbleToScale True SucceededGetScale the HPA controller was able to get the target's current scale
ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API
The following is an example of a pod where the requested autoscaling was less than the required minimums:
Example output
Conditions:
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).
The horizontal pod autoscaler status conditions are available with the |
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
Name: wait-for-host-port
Usage:
Memory: 0
Name: scheduler
Usage:
Cpu: 8m
Memory: 45440Ki
Kind: PodMetrics
Metadata:
Creation Timestamp: 2019-05-23T18:47:56Z
Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>
Procedure
To view the status conditions on a pod, use the following command with the name of the pod:
$ oc describe hpa <pod-name>
For example:
The conditions appear in the Conditions
field in the output.
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: ( current / target )
"http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: (1)
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
Additional resources
For more information on replication controllers and deployment controllers, see .