Electron 中的消息端口
下面是 MessagePort 是什么和如何工作的一个非常简短的例子:
renderer.js (Renderer Process)
main.js (Main Process)
// In the main process, we receive the port.
ipcMain.on('port', (event) => {
// 当我们在主进程中接收到 MessagePort 对象, 它就成为了
// MessagePortMain.
const port = event.ports[0]
// MessagePortMain 使用了 Node.js 风格的事件 API, 而不是
// web 风格的事件 API. 因此使用 .on('message', ...) 而不是 .onmessage = ...
port.on('message', (event) => {
// 收到的数据是: { answer: 42 }
const data = event.data
})
// MessagePortMain 阻塞消息直到 .start() 方法被调用
port.start()
})
关于 channel 消息接口的使用文档详见 Channel Messaging API
在渲染器中, MessagePort
类的行为与它在 web 上的行为完全一样。 但是,主进程不是网页(它没有 Blink 集成),因此它没有 MessagePort
或 MessageChannel
类。 为了在主进程中处理 MessagePorts 并与之交互,Electron 添加了两个新类: MessagePortMain 和 。 这些行为 类似于渲染器中 analogous 类。
MessagePort
对象可以在渲染器或主 进程中创建,并使用 ipcRenderer.postMessage 和 方法互相传递。 请注意,通常的 IPC 方法,例如 send
和 invoke
不能用来传输 MessagePort
, 只有 postMessage
方法可以传输 MessagePort
。
通过主进程传递 MessagePort
,就可以连接两个可能无法通信的页面 (例如,由于同源限制) 。
Electron adds one feature to MessagePort
that isn’t present on the web, in order to make MessagePorts more useful. That is the close
event, which is emitted when the other end of the channel is closed. Ports can also be implicitly closed by being garbage-collected.
In this example, the main process sets up a MessageChannel, then sends each port to a different renderer. This allows renderers to send messages to each other without needing to use the main process as an in-between.
main.js (Main Process)
const { BrowserWindow, app, MessageChannelMain } = require('electron')
app.whenReady().then(async () => {
// create the windows.
const mainWindow = new BrowserWindow({
show: false,
webPreferences: {
contextIsolation: false,
preload: 'preloadMain.js'
}
})
const secondaryWindow = new BrowserWindow({
show: false,
webPreferences: {
contextIsolation: false,
preload: 'preloadSecondary.js'
}
})
// set up the channel.
const { port1, port2 } = new MessageChannelMain()
// once the webContents are ready, send a port to each webContents with postMessage.
mainWindow.once('ready-to-show', () => {
mainWindow.webContents.postMessage('port', null, [port1])
})
secondaryWindow.once('ready-to-show', () => {
secondaryWindow.webContents.postMessage('port', null, [port2])
})
})
Then, in your preload scripts you receive the port through IPC and set up the listeners.
preloadMain.js and preloadSecondary.js (Preload scripts)
const { ipcRenderer } = require('electron')
ipcRenderer.on('port', e => {
window.electronMessagePort = e.ports[0]
window.electronMessagePort.onmessage = messageEvent => {
// handle message
}
In this example messagePort is bound to the window
object directly. It is better to use contextIsolation
and set up specific contextBridge calls for each of your expected messages, but for the simplicity of this example we don’t. You can find an example of context isolation further down this page at
That means window.electronMessagePort is globally available and you can call postMessage
on it from anywhere in your app to send a message to the other renderer.
renderer.js (Renderer Process)
In this example, your app has a worker process implemented as a hidden window. You want the app page to be able to communicate directly with the worker process, without the performance overhead of relaying via the main process.
const { BrowserWindow, app, ipcMain, MessageChannelMain } = require('electron')
app.whenReady().then(async () => {
// The worker process is a hidden BrowserWindow, so that it will have access
// to a full Blink context (including e.g. <canvas>, audio, fetch(), etc.)
const worker = new BrowserWindow({
show: false,
webPreferences: { nodeIntegration: true }
})
await worker.loadFile('worker.html')
// main window 将发送内容给 worker process 同时通过 MessagePort 接收返回值
const mainWindow = new BrowserWindow({
webPreferences: { nodeIntegration: true }
})
mainWindow.loadFile('app.html')
// 在这里我们不能使用 ipcMain.handle() , 因为回复需要传输
// MessagePort.
// Listen for message sent from the top-level frame
mainWindow.webContents.mainFrame.on('request-worker-channel', (event) => {
// Create a new channel ...
const { port1, port2 } = new MessageChannelMain()
// ... send one end to the worker ...
worker.webContents.postMessage('new-client', null, [port1])
// ... and the other end to the main window.
event.senderFrame.postMessage('provide-worker-channel', null, [port2])
// Now the main window and the worker can communicate with each other
// without going through the main process!
})
})
worker.html
<script>
const { ipcRenderer } = require('electron')
const doWork = (input) => {
// Something cpu-intensive.
return input * 2
}
// 我们可能会得到多个 clients, 比如有多个 windows,
// 或者假如 main window 重新加载了.
ipcRenderer.on('new-client', (event) => {
const [ port ] = event.ports
port.onmessage = (event) => {
// 事件数据可以是任何可序列化的对象 (事件甚至可以
// 携带其他 MessagePorts 对象!)
const result = doWork(event.data)
port.postMessage(result)
}
})
</script>
app.html
<script>
const { ipcRenderer } = require('electron')
// We request that the main process sends us a channel we can use to
// communicate with the worker.
ipcRenderer.send('request-worker-channel')
ipcRenderer.once('provide-worker-channel', (event) => {
// 一旦收到回复, 我们可以这样做...
const [ port ] = event.ports
port.onmessage = (event) => {
console.log('received result:', event.data)
// ... 并开始发送消息给 work!
port.postMessage(21)
})
</script>
Electron’s built-in IPC methods only support two modes: fire-and-forget (e.g. send
), or request-response (e.g. invoke
). Using MessageChannels, you can implement a “response stream”, where a single request responds with a stream of data.
renderer.js (Renderer Process)
main.js (Main Process)
ipcMain.on('give-me-a-stream', (event, msg) => {
// The renderer has sent us a MessagePort that it wants us to send our
// response over.
const [replyPort] = event.ports
// Here we send the messages synchronously, but we could just as easily store
// the port somewhere and send messages asynchronously.
for (let i = 0; i < msg.count; i++) {
replyPort.postMessage(msg.element)
}
// We close the port when we're done to indicate to the other end that we
// won't be sending any more messages. This isn't strictly necessary--if we
// didn't explicitly close the port, it would eventually be garbage
// collected, which would also trigger the 'close' event in the renderer.
replyPort.close()
})
当 [context isolation][] 已启用。 IPC 消息从主进程发送到渲染器是发送到隔离的世界,而不是发送到主世界。 有时候你希望不通过隔离的世界,直接向主世界发送消息。
main.js (Main Process)
const { BrowserWindow, app, MessageChannelMain } = require('electron')
const path = require('path')
app.whenReady().then(async () => {
// Create a BrowserWindow with contextIsolation enabled.
const bw = new BrowserWindow({
webPreferences: {
contextIsolation: true,
preload: path.join(__dirname, 'preload.js')
}
})
bw.loadURL('index.html')
// We'll be sending one end of this channel to the main world of the
// context-isolated page.
const { port1, port2 } = new MessageChannelMain()
// 允许在另一端还没有注册监听器的情况下就通过通道向其发送消息 消息将排队等待,直到有一个监听器注册为止。
port2.postMessage({ test: 21 })
// 我们也可以接收来自渲染器主进程的消息。
port2.on('message', (event) => {
console.log('from renderer main world:', event.data)
})
port2.start()
// 预加载脚本将接收此 IPC 消息并将端口
// 传输到主进程。
bw.webContents.postMessage('main-world-port', null, [port1])
})
preload.js (Preload Script)
const { ipcRenderer } = require('electron')
// We need to wait until the main world is ready to receive the message before
// sending the port. 我们在预加载时创建此 promise ,以此保证
// 在触发 load 事件之前注册 onload 侦听器。
const windowLoaded = new Promise(resolve => {
window.onload = resolve
})
ipcRenderer.on('main-world-port', async (event) => {
await windowLoaded
// 我们使用 window.postMessage 将端口
// 发送到主进程
window.postMessage('main-world-port', '*', event.ports)
[context isolation]: latest/tutorial/context-isolation. md