Automated Testing
From :
There are a few ways that you can set up testing using WebDriver.
(WDIO) is a test automation framework that provides a Node.js package for testing with WebDriver. Its ecosystem also includes various plugins (e.g. reporter and services) that can help you put together your test setup.
Install the test runner
First you need to run the WebdriverIO starter toolkit in your project root directory:
- npm
- Yarn
This installs all necessary packages for you and generates a wdio.conf.js
configuration file.
Connect WDIO to your Electron app
Update the capabilities in your configuration file to point to your Electron app binary:
wdio.conf.js
export.config = {
// ...
capabilities: [{
browserName: 'chrome',
'goog:chromeOptions': {
binary: '/path/to/your/electron/binary', // Path to your Electron binary.
args: [/* cli arguments */] // Optional, perhaps 'app=' + /path/to/your/app/
}
}]
// ...
}
Run your tests
To run your tests:
$ npx wdio run wdio.conf.js
Selenium is a web automation framework that exposes bindings to WebDriver APIs in many languages. Their Node.js bindings are available under the selenium-webdriver
package on NPM.
Run a ChromeDriver server
In order to use Selenium with Electron, you need to download the electron-chromedriver
binary, and run it:
- npm
- Yarn
npm install --save-dev electron-chromedriver
./node_modules/.bin/chromedriver
Starting ChromeDriver (v2.10.291558) on port 9515
Only local connections are allowed.
yarn add --dev electron-chromedriver
./node_modules/.bin/chromedriver
Starting ChromeDriver (v2.10.291558) on port 9515
Only local connections are allowed.
Remember the port number 9515
, which will be used later.
Connect Selenium to ChromeDriver
Next, install Selenium into your project:
- npm
- Yarn
npm install --save-dev selenium-webdriver
Usage of selenium-webdriver
with Electron is the same as with normal websites, except that you have to manually specify how to connect ChromeDriver and where to find the binary of your Electron app:
const webdriver = require('selenium-webdriver')
const driver = new webdriver.Builder()
// The "9515" is the port opened by ChromeDriver.
.usingServer('http://localhost:9515')
.withCapabilities({
'goog:chromeOptions': {
// Here is the path to your Electron binary.
binary: '/Path-to-Your-App.app/Contents/MacOS/Electron'
}
})
.forBrowser('chrome') // note: use .forBrowser('electron') for selenium-webdriver <= 3.6.0
.build()
driver.get('http://www.google.com')
driver.findElement(webdriver.By.name('q')).sendKeys('webdriver')
driver.findElement(webdriver.By.name('btnG')).click()
driver.wait(() => {
return driver.getTitle().then((title) => {
return title === 'webdriver - Google Search'
})
}, 1000)
driver.quit()
Microsoft Playwright is an end-to-end testing framework built using browser-specific remote debugging protocols, similar to the headless Node.js API but geared towards end-to-end testing. Playwright has experimental Electron support via Electron’s support for the Chrome DevTools Protocol (CDP).
You can install Playwright through your preferred Node.js package manager. The Playwright team recommends using the PLAYWRIGHT_SKIP_BROWSER_DOWNLOAD
environment variable to avoid unnecessary browser downloads when testing an Electron app.
- npm
- Yarn
PLAYWRIGHT_SKIP_BROWSER_DOWNLOAD=1 npm install --save-dev playwright
Playwright also comes with its own test runner, Playwright Test, which is built for end-to-end testing. You can also install it as a dev dependency in your project:
- npm
- Yarn
npm install --save-dev @playwright/test
yarn add --dev @playwright/test
Dependencies
This tutorial was written playwright@1.16.3
and @playwright/test@1.16.3
. Check out Playwright’s releases page to learn about changes that might affect the code below.
Using third-party test runners
If you’re interested in using an alternative test runner (e.g. Jest or Mocha), check out Playwright’s guide.
Playwright launches your app in development mode through the _electron.launch
API. To point this API to your Electron app, you can pass the path to your main process entry point (here, it is main.js
).
const { _electron: electron } = require('playwright')
const { test } = require('@playwright/test')
test('launch app', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
// close app
})
After that, you will access to an instance of Playwright’s ElectronApp
class. This is a powerful class that has access to main process modules for example:
It can also create individual objects from Electron BrowserWindow instances. For example, to grab the first BrowserWindow and save a screenshot:
const { _electron: electron } = require('playwright')
const { test } = require('@playwright/test')
test('save screenshot', async () => {
const electronApp = await electron.launch({ args: ['main.js'] })
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
})
Putting all this together using the PlayWright Test runner, let’s create a example.spec.js
test file with a single test and assertion:
example.spec.js
const { _electron: electron } = require('playwright')
const { test, expect } = require('@playwright/test')
test('example test', async () => {
const electronApp = await electron.launch({ args: ['.'] })
const isPackaged = await electronApp.evaluate(async ({ app }) => {
// This runs in Electron's main process, parameter here is always
// the result of the require('electron') in the main app script.
return app.isPackaged;
});
expect(isPackaged).toBe(false);
// Wait for the first BrowserWindow to open
// and return its Page object
const window = await electronApp.firstWindow()
await window.screenshot({ path: 'intro.png' })
// close app
await electronApp.close()
});
Then, run Playwright Test using npx playwright test
. You should see the test pass in your console, and have an intro.png
screenshot on your filesystem.
☁ $ npx playwright test
Running 1 test using 1 worker
✓ example.spec.js:4:1 › example test (1s)
info
Further reading
Check out Playwright’s documentation for the full Electron and class APIs.
It’s also possible to write your own custom driver using Node.js’ built-in IPC-over-STDIO. Custom test drivers require you to write additional app code, but have lower overhead and let you expose custom methods to your test suite.
To create a custom driver, we’ll use Node.js’ API. The test suite will spawn the Electron process, then establish a simple messaging protocol:
testDriver.js
const childProcess = require('child_process')
const electronPath = require('electron')
// spawn the process
const env = { /* ... */ }
const stdio = ['inherit', 'inherit', 'inherit', 'ipc']
const appProcess = childProcess.spawn(electronPath, ['./app'], { stdio, env })
// listen for IPC messages from the app
appProcess.on('message', (msg) => {
// ...
})
// send an IPC message to the app
appProcess.send({ my: 'message' })
From within the Electron app, you can listen for messages and send replies using the Node.js process API:
main.js
// listen for messages from the test suite
// ...
})
process.send({ my: 'message' })
We can now communicate from the test suite to the Electron app using the appProcess
object.
For convenience, you may want to wrap appProcess
in a driver object that provides more high-level functions. Here is an example of how you can do this. Let’s start by creating a TestDriver
class:
testDriver.js
class TestDriver {
constructor ({ path, args, env }) {
this.rpcCalls = []
// start child process
env.APP_TEST_DRIVER = 1 // let the app know it should listen for messages
this.process = childProcess.spawn(path, args, { stdio: ['inherit', 'inherit', 'inherit', 'ipc'], env })
// handle rpc responses
this.process.on('message', (message) => {
// pop the handler
const rpcCall = this.rpcCalls[message.msgId]
if (!rpcCall) return
this.rpcCalls[message.msgId] = null
// reject/resolve
if (message.reject) rpcCall.reject(message.reject)
else rpcCall.resolve(message.resolve)
})
// wait for ready
this.isReady = this.rpc('isReady').catch((err) => {
console.error('Application failed to start', err)
this.stop()
process.exit(1)
})
}
// simple RPC call
// to use: driver.rpc('method', 1, 2, 3).then(...)
async rpc (cmd, ...args) {
// send rpc request
const msgId = this.rpcCalls.length
this.process.send({ msgId, cmd, args })
return new Promise((resolve, reject) => this.rpcCalls.push({ resolve, reject }))
}
stop () {
this.process.kill()
}
}
module.exports = { TestDriver };
In your app code, can then write a simple handler to receive RPC calls:
main.js
Then, in your test suite, you can use your TestDriver
class with the test automation framework of your choosing. The following example uses , but other popular choices like Jest or Mocha would work as well:
test.js
const test = require('ava')
const electronPath = require('electron')
const { TestDriver } = require('./testDriver')
const app = new TestDriver({
path: electronPath,
args: ['./app'],
env: {
NODE_ENV: 'test'
}
})
test.before(async t => {
await app.isReady
})
test.after.always('cleanup', async t => {
})