CREATE TABLE
column_definition Syntax: Explain: col_name: Name of column col_type: Type of column
BOOLEAN(1 Byte)
Range: {0,1}
TINYINT(1 Byte)
Range: -2^7 + 1 ~ 2^7 - 1
SMALLINT(2 Bytes)
Range: -2^15 + 1 ~ 2^15 - 1
INT(4 Bytes)
Range: -2^31 + 1 ~ 2^31 - 1
BIGINT(8 Bytes)
Range: -2^63 + 1 ~ 2^63 - 1
LARGEINT(16 Bytes)
Range: -2^127 + 1 ~ 2^127 - 1
FLOAT(4 Bytes)
Support scientific notation
DOUBLE(8 Bytes)
Support scientific notation
DECIMAL[(precision, scale)] (16 Bytes)
Default is DECIMAL(10, 0)
precision: 1 ~ 27
scale: 0 ~ 9
integer part: 1 ~ 18
fractional part: 0 ~ 9
Not support scientific notation
DATE(3 Bytes)
Range: 0000-01-01 ~ 9999-12-31
DATETIME(8 Bytes)
Range: 0000-01-01 00:00:00 ~ 9999-12-31 23:59:59
CHAR[(length)]
Fixed length string. Range: 1 ~ 255. Default: 1
VARCHAR[(length)]
Variable length string. Range: 1 ~ 65533
HLL (1~16385 Bytes)
HLL tpye, No need to specify length.
This type can only be queried by hll_union_agg, hll_cardinality, hll_hash functions.
BITMAP
BITMAP type, No need to specify length. Represent a set of unsigned bigint numbers, the largest element could be 2^64 - 1
agg_type: Aggregation type. If not specified, the column is key column. Otherwise, the column is value column.
* SUM、MAX、MIN、REPLACE
* HLL_UNION: Only for HLL type
* REPLACE_IF_NOT_NULL: The meaning of this aggregation type is that substitution will occur if and only if the newly imported data is a non-null value. If the newly imported data is null, Doris will still retain the original value. Note: if NOT NULL is specified in the REPLACE_IF_NOT_NULL column when the user creates the table, Doris will convert it to NULL and will not report an error to the user. Users can leverage this aggregate type to achieve importing some of columns .**It should be noted here that the default value should be NULL, not an empty string. If it is an empty string, you should replace it with an empty string**.
* BITMAP_UNION: Only for BITMAP type
Allow NULL: Default is NOT NULL. NULL value should be represented as
\N
in load source file. Notice: The origin value of BITMAP_UNION column should be TINYINT, SMALLINT, INT, BIGINT.index_definition Syntax:
INDEX index_name (col_name[, col_name, ...]) [USING BITMAP] COMMENT 'xxxxxx'
Explain: index_name: index name col_name: column name Notice: Only support BITMAP index in current version, BITMAP can only apply to single columnENGINE type Default is olap. Options are: olap, mysql, broker, hive, iceberg
For mysql, properties should include:
PROPERTIES (
"host" = "mysql_server_host",
"port" = "mysql_server_port",
"user" = "your_user_name",
"password" = "your_password",
"database" = "database_name",
"table" = "table_name"
)
Notice: “table_name” is the real table name in MySQL database. table_name in CREATE TABLE stmt is table is Doris. They can be different or same. MySQL table created in Doris is for accessing data in MySQL database. Doris does not maintain and store any data from MySQL table. 2) For broker, properties should include:
PROPERTIES (
"broker_name" = "broker_name",
"path" = "file_path1[,file_path2]",
"column_separator" = "value_separator"
"line_delimiter" = "value_delimiter"
)
BROKER PROPERTIES(
"username" = "name",
"password" = "password"
)
For different broker, the broker properties are different
Notice:
Files name in "path" is separated by ",". If file name includes ",", use "%2c" instead. If file name includes "%", use "%25" instead.
Support CSV and Parquet. Support GZ, BZ2, LZ4, LZO(LZOP)
For hive, properties should include:
PROPERTIES (
"database" = "hive_db_name",
"table" = "hive_table_name",
"hive.metastore.uris" = "thrift://127.0.0.1:9083"
)
“database” is the name of the database corresponding to the hive table, “table” is the name of the hive table, and “hive.metastore.uris” is the hive metastore service address.
For iceberg, properties should include:
PROPERTIES (
"iceberg.database" = "iceberg_db_name",
"iceberg.table" = "iceberg_table_name",
"iceberg.hive.metastore.uris" = "thrift://127.0.0.1:9083",
"iceberg.catalog.type" = "HIVE_CATALOG"
)
database is the name of the database corresponding to Iceberg.
table is the name of the table corresponding to Iceberg. hive.metastore.uris is the address of the hive metastore service.
catalog.type defaults to HIVE_CATALOG. Currently, only HIVE_CATALOG is supported, more Iceberg catalog types will be supported later.
key_desc Syntax: key_type(k1[,k2 …]) Explain: Data is order by specified key columns. And has different behaviors for different key desc. AGGREGATE KEY: value columns will be aggregated is key columns are same. UNIQUE KEY: The new incoming rows will replace the old rows if key columns are same. DUPLICATE KEY: All incoming rows will be saved. the default key_type is DUPLICATE KEY, and key columns are first 36 bytes of the columns in define order. If the number of columns in the first 36 is less than 3, the first 3 columns will be used. NOTICE: Except for AGGREGATE KEY, no need to specify aggregation type for value columns.
partition_desc Currently, both RANGE and LIST partitioning methods are supported. 5.1 RANGE partition RANGE Partition has two ways to use: 1) LESS THAN Syntax:
PARTITION BY RANGE (k1, k2, ...)
(
PARTITION partition_name1 VALUES LESS THAN MAXVALUE|("value1", "value2", ...),
PARTITION partition_name2 VALUES LESS THAN MAXVALUE|("value1", "value2", ...)
...
)
```
Use the specified key column and the specified range of values for partitioning.
1) Partition name only support [A-z0-9_]
2) Partition key column's type should be:
TINYINT, SMALLINT, INT, BIGINT, LARGEINT, DATE, DATETIME
3) The range is [closed, open). And the lower bound of first partition is MIN VALUE of specified column type.
4) NULL values should be save in partition which includes MIN VALUE.
5) Support multi partition columns, the the default partition value is MIN VALUE.
2)Fixed Range Syntax:
```
PARTITION BY RANGE (k1, k2, k3, ...)
(
PARTITION partition_name1 VALUES [("k1-lower1", "k2-lower1", "k3-lower1",...), ("k1-upper1", "k2-upper1", "k3-upper1", ...)),
PARTITION partition_name2 VALUES [("k1-lower1-2", "k2-lower1-2", ...), ("k1-upper1-2", MAXVALUE, ))
"k3-upper1-2", ...
)
```
Explain:
1)The Fixed Range is more flexible than the LESS THAN, and the left and right intervals are completely determined by the user.
2)Others are consistent with LESS THAN.
5.2 LIST partition LIST partition is divided into single column partition and multi-column partition 1) Single column partition Syntax.
2) Multi-column partition
Syntax.
```
PARTITION BY LIST(k1, k2)
(
PARTITION partition_name1 VALUES IN (("value1", "value2"), ("value1", "value2"), ...) ,
PARTITION partition_name2 VALUES IN (("value1", "value2"), ("value1", "value2"), ...)
...
)
```
Explain:
1) the partition of a multi-column partition is a collection of tuple enumeration values
2) The number of tuple values per partition must be equal to the number of columns in the partition
3) The other partitions are synchronized with the single column partition
```
distribution_desc
- Hash Syntax:
DISTRIBUTED BY HASH (k1[,k2 ...]) [BUCKETS num]
Explain: The default buckets is 10.
- Hash Syntax:
PROPERTIES
If ENGINE type is olap. User can specify storage medium, cooldown time and replication number:
PROPERTIES (
"storage_medium" = "[SSD|HDD]",
["storage_cooldown_time" = "yyyy-MM-dd HH:mm:ss"],
["replication_num" = "3"],
["replication_allocation" = "xxx"]
)
storage_medium: SSD or HDD, The default initial storage media can be specified by
default_storage_medium= XXX
in the fe configuration filefe.conf
, or, if not, by default, HDD. Note: when FE configuration ‘enable_strict_storage_medium_check’ is’ True ‘, if the corresponding storage medium is not set in the cluster, the construction clause ‘Failed to find enough host in all backends with storage medium is SSD|HDD’. storage_cooldown_time: If storage_medium is SSD, data will be automatically moved to HDD when timeout. Default is 30 days. Format: “yyyy-MM-dd HH:mm:ss” replication_num: Replication number of a partition. Default is 3. replication_allocation: Specify the distribution of replicas according to the resource tag.If table is not range partitions. This property takes on Table level. Or it will takes on Partition level. User can specify different properties for different partition by
ADD PARTITION
orMODIFY PARTITION
statements.If Engine type is olap, user can set bloom filter index for column. Bloom filter index will be used when query contains
IN
orEQUAL
. Bloom filter index support key columns with type except TINYINT FLOAT DOUBLE, also support value with REPLACE aggregation type.PROPERTIES (
"bloom_filter_columns"="k1,k2,k3"
)
For Colocation Join:
PROPERTIES (
"colocate_with"="table1"
)
if you want to use the dynamic partitioning feature, specify it in properties. Note: Dynamic partitioning only supports RANGE partitions
PROPERTIES (
"dynamic_partition.enable" = "true|false",
"dynamic_partition.time_unit" = "HOUR|DAY|WEEK|MONTH",
"dynamic_partition.end" = "${integer_value}",
"dynamic_partition.prefix" = "${string_value}",
"dynamic_partition.buckets" = "${integer_value}
)
dynamic_partition.enable: specifies whether dynamic partitioning at the table level is enabled dynamic_partition.time_unit: used to specify the time unit for dynamically adding partitions, which can be selected as HOUR, DAY, WEEK, and MONTH. Attention: When the time unit is HOUR, the data type of partition column cannot be DATE. dynamic_partition.end: used to specify the number of partitions created in advance dynamic_partition.prefix: used to specify the partition name prefix to be created, such as the partition name prefix p, automatically creates the partition name p20200108 dynamic_partition.buckets: specifies the number of partition buckets that are automatically created dynamic_partition.create_history_partition: specifies whether create history partitions, default value is false dynamic_partition.history_partition_num: used to specify the number of history partitions when enable create_history_partition dynamic_partition.reserved_history_periods: Used to specify the range of reserved history periods
You can create multiple Rollups in bulk when building a table grammar:
ROLLUP (rollup_name (column_name1, column_name2, ...)
[FROM from_index_name]
[PROPERTIES ("key"="value", ...)],...)
if you want to use the inmemory table feature, specify it in properties
PROPERTIES (
"in_memory"="true"
)
Create an olap table, distributed by hash, with aggregation type.
CREATE TABLE example_db.table_hash
(
k1 BOOLEAN,
k2 TINYINT,
k3 DECIMAL(10, 2) DEFAULT "10.5",
v2 INT SUM
ENGINE=olap
AGGREGATE KEY(k1, k2, k3)
COMMENT "my first doris table"
DISTRIBUTED BY HASH(k1) BUCKETS 32;
Create an olap table, distributed by hash, with aggregation type. Also set storage medium and cooldown time.
CREATE TABLE example_db.table_hash
(
k1 BIGINT,
k2 LARGEINT,
v1 VARCHAR(2048) REPLACE,
v2 SMALLINT SUM DEFAULT "10"
)
ENGINE=olap
AGGREGATE KEY(k1, k2)
DISTRIBUTED BY HASH (k1, k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD",
"storage_cooldown_time" = "2015-06-04 00:00:00"
);
LESS THAN
CREATE TABLE example_db.table_range
(
k1 DATE,
k2 INT,
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
ENGINE=olap
DUPLICATE KEY(k1, k2, k3)
PARTITION BY RANGE (k1)
(
PARTITION p1 VALUES LESS THAN ("2014-01-01"),
PARTITION p2 VALUES LESS THAN ("2014-06-01"),
PARTITION p3 VALUES LESS THAN ("2014-12-01")
)
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD", "storage_cooldown_time" = "2015-06-04 00:00:00"
);
Explain: This statement will create 3 partitions:
( { MIN }, {"2014-01-01"} )
[ {"2014-01-01"}, {"2014-06-01"} )
[ {"2014-06-01"}, {"2014-12-01"} )
Data outside these ranges will not be loaded.
Fixed Range
CREATE TABLE table_range
(
k1 DATE,
k2 INT,
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
ENGINE=olap
DUPLICATE KEY(k1, k2, k3)
PARTITION BY RANGE (k1, k2, k3)
(
PARTITION p1 VALUES [("2014-01-01", "10", "200"), ("2014-01-01", "20", "300")),
PARTITION p2 VALUES [("2014-06-01", "100", "200"), ("2014-07-01", "100", "300"))
)
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD"
);
Create an olap table, with list partitioned, distributed by hash. Records with the same key exist at the same time, set the initial storage medium and cooling time, use default column storage.
- Single column partition
CREATE TABLE example_db.table_list
(
k1 INT,
k2 VARCHAR(128),
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
ENGINE=olap
DUPLICATE KEY(k1, k2, k3)
PARTITION BY LIST (k1)
(
PARTITION p1 VALUES IN ("1", "2", "3"),
PARTITION p2 VALUES IN ("4", "5", "6"),
PARTITION p3 VALUES IN ("7", "8", "9")
)
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD", "storage_cooldown_time" = "2022-06-04 00:00:00"
);
Explain: This statement will divide the data into 3 partitions as follows.
("1", "2", "3")
("4", "5", "6")
("7", "8", "9")
Data that does not fall within these partition enumeration values will be filtered as illegal data
- Multi-column partition
CREATE TABLE example_db.table_list
(
k1 INT,
k2 VARCHAR(128),
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
ENGINE=olap
DUPLICATE KEY(k1, k2, k3)
PARTITION BY LIST (k1, k2)
(
PARTITION p1 VALUES IN (("1", "beijing"), ("1", "shanghai")),
PARTITION p2 VALUES IN (("2", "beijing"), ("2", "shanghai")),
PARTITION p3 VALUES IN (("3", "beijing"), ("3", "shanghai"))
)
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD", "storage_cooldown_time" = "2022-06-04 00:00:00"
);
Explain: This statement will divide the data into 3 partitions as follows.
(("1", "beijing"), ("1", "shanghai"))
(("2", "beijing"), ("2", "shanghai"))
(("3", "beijing"), ("3", "shanghai"))
Data that is not within these partition enumeration values will be filtered as illegal data
Create a mysql table 5.1 Create MySQL table directly from external table information
5.2 Create MySQL table with external ODBC catalog resource
CREATE EXTERNAL RESOURCE "mysql_resource"
PROPERTIES
(
"type" = "odbc_catalog",
"user" = "mysql_user",
"password" = "mysql_passwd",
"host" = "127.0.0.1",
"port" = "8239"
);
CREATE EXTERNAL TABLE example_db.table_mysql
(
k1 DATE,
k2 INT,
k3 SMALLINT,
k4 VARCHAR(2048),
k5 DATETIME
)
ENGINE=mysql
PROPERTIES
(
"odbc_catalog_resource" = "mysql_resource",
"database" = "mysql_db_test",
"table" = "mysql_table_test"
)
Create a broker table, with file on HDFS, line delimit by “|”, column separated by “\n”
CREATE EXTERNAL TABLE example_db.table_broker (
k1 DATE,
k2 INT,
k3 SMALLINT,
k4 VARCHAR(2048),
k5 DATETIME
)
ENGINE=broker
PROPERTIES (
"broker_name" = "hdfs",
"path" = "hdfs://hdfs_host:hdfs_port/data1,hdfs://hdfs_host:hdfs_port/data2,hdfs://hdfs_host:hdfs_port/data3%2c4",
"column_separator" = "|",
"line_delimiter" = "\n"
)
BROKER PROPERTIES (
"username" = "hdfs_user",
"password" = "hdfs_password"
);
Create table will HLL column
CREATE TABLE example_db.example_table
(
k1 TINYINT,
k2 DECIMAL(10, 2) DEFAULT "10.5",
v1 HLL HLL_UNION,
v2 HLL HLL_UNION
ENGINE=olap
DISTRIBUTED BY HASH(k1) BUCKETS 32;
Create a table will BITMAP_UNION column
CREATE TABLE example_db.example_table
(
k1 TINYINT,
k2 DECIMAL(10, 2) DEFAULT "10.5",
v1 BITMAP BITMAP_UNION,
v2 BITMAP BITMAP_UNION
)
ENGINE=olap
AGGREGATE KEY(k1, k2)
DISTRIBUTED BY HASH(k1) BUCKETS 32;
Create 2 colocate join table.
CREATE TABLE `t1` (
`id` int(11) COMMENT "",
`value` varchar(8) COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"colocate_with" = "group1"
);
CREATE TABLE `t2` (
`id` int(11) COMMENT "",
`value` varchar(8) COMMENT ""
) ENGINE=OLAP
DUPLICATE KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 10
PROPERTIES (
"colocate_with" = "group1"
);
Create a broker table, with file on BOS.
CREATE EXTERNAL TABLE example_db.table_broker (
k1 DATE
)
ENGINE=broker
PROPERTIES (
"broker_name" = "bos",
"path" = "bos://my_bucket/input/file",
)
BROKER PROPERTIES (
"bos_endpoint" = "http://bj.bcebos.com",
"bos_accesskey" = "xxxxxxxxxxxxxxxxxxxxxxxxxx",
"bos_secret_accesskey"="yyyyyyyyyyyyyyyyyyyy"
);
Create a table with a bitmap index
CREATE TABLE example_db.table_hash
(
k1 TINYINT,
k2 DECIMAL(10, 2) DEFAULT "10.5",
v1 CHAR(10) REPLACE,
v2 INT SUM,
INDEX k1_idx (k1) USING BITMAP COMMENT 'xxxxxx'
)
ENGINE=olap
AGGREGATE KEY(k1, k2)
COMMENT "my first doris table"
DISTRIBUTED BY HASH(k1) BUCKETS 32;
-
[types: [DATE]; keys: [2020-01-08]; ‥types: [DATE]; keys: [2020-01-09]; )
[types: [DATE]; keys: [2020-01-09]; ‥types: [DATE]; keys: [2020-01-10]; )
[types: [DATE]; keys: [2020-01-10]; ‥types: [DATE]; keys: [2020-01-11]; )
[types: [DATE]; keys: [2020-01-11]; ‥types: [DATE]; keys: [2020-01-12]; )
CREATE TABLE example_db.dynamic_partition
(
k1 DATE,
k2 INT,
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
ENGINE=olap
DUPLICATE KEY(k1, k2, k3)
PARTITION BY RANGE (k1) ()
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"storage_medium" = "SSD",
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.end" = "3",
"dynamic_partition.prefix" = "p",
"dynamic_partition.buckets" = "32"
);
Create a table with rollup index
CREATE TABLE example_db.rolup_index_table
(
event_day DATE,
siteid INT DEFAULT '10',
citycode SMALLINT,
username VARCHAR(32) DEFAULT '',
pv BIGINT SUM DEFAULT '0'
)
AGGREGATE KEY(event_day, siteid, citycode, username)
DISTRIBUTED BY HASH(siteid) BUCKETS 10
rollup (
r1(event_day,siteid),
r2(event_day,citycode),
r3(event_day)
)
PROPERTIES("replication_num" = "3");
- Create a inmemory table:
CREATE TABLE example_db.table_hash
(
k1 TINYINT,
k2 DECIMAL(10, 2) DEFAULT "10.5",
v1 CHAR(10) REPLACE,
v2 INT SUM,
INDEX k1_idx (k1) USING BITMAP COMMENT 'xxxxxx'
)
ENGINE=olap
AGGREGATE KEY(k1, k2)
COMMENT "my first doris table"
DISTRIBUTED BY HASH(k1) BUCKETS 32
PROPERTIES ("in_memory"="true");
- Create a hive external table
CREATE TABLE example_db.table_hive
(
k1 TINYINT,
k2 VARCHAR(50),
v INT
)
ENGINE=hive
PROPERTIES
(
"database" = "hive_db_name",
"table" = "hive_table_name",
"hive.metastore.uris" = "thrift://127.0.0.1:9083"
);
- Specify the replica distribution of the table through replication_allocation
CREATE TABLE example_db.table_hash
(
k1 TINYINT,
k2 DECIMAL(10, 2) DEFAULT "10.5"
)
DISTRIBUTED BY HASH(k1) BUCKETS 32
PROPERTIES (
"replication_allocation"="tag.location.group_a:1, tag.location.group_b:2"
);
CREATE TABLE example_db.dynamic_partition
(
k1 DATE,
k2 INT,
k3 SMALLINT,
v1 VARCHAR(2048),
v2 DATETIME DEFAULT "2014-02-04 15:36:00"
)
PARTITION BY RANGE (k1) ()
DISTRIBUTED BY HASH(k2) BUCKETS 32
PROPERTIES(
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.start" = "-3",
"dynamic_partition.end" = "3",
"dynamic_partition.prefix" = "p",
"dynamic_partition.buckets" = "32",
"dynamic_partition."replication_allocation" = "tag.location.group_a:3"
);
- Create an Iceberg external table
CREATE TABLE example_db.t_iceberg
ENGINE=ICEBERG
PROPERTIES (
"iceberg.database" = "iceberg_db",
"iceberg.table" = "iceberg_table",
"iceberg.hive.metastore.uris" = "thrift://127.0.0.1:9083",
"iceberg.catalog.type" = "HIVE_CATALOG"
CREATE,TABLE