Encrypting Data and Database Connections
Encryption can be used to protect data in a Greenplum Database system in the following ways:
- Connections between clients and the master database can be encrypted with SSL. This is enabled by setting the server configuration parameter to
on
and editing thepg_hba.conf
file. See “Encrypting Client/Server Connections” in the Greenplum Database Administrator Guide for information about enabling SSL in Greenplum Database. - Greenplum Database 4.2.1 and above allow SSL encryption of data in transit between the Greenplum parallel file distribution server,
gpfdist
, and segment hosts. SeeEncrypting gpfdist Connections for more information. - Network communications between hosts in the Greenplum Database cluster can be encrypted using IPsec. An authenticated, encrypted VPN is established between every pair of hosts in the cluster. Check your operating system documentation for IPsec support, or consider a third-party solution such as that provided by .
- The
pgcrypto
module of encryption/decryption functions protects data at rest in the database. Encryption at the column level protects sensitive information, such as passwords, Social Security numbers, or credit card numbers. See Encrypting Data in Tables using PGP for an example.
- Encryption ensures that data can be seen only by users who have the key required to decrypt the data.
- Encrypting and decrypting data has a performance cost; only encrypt data that requires encryption.
- Do performance testing before implementing any encryption solution in a production system.
- Server certificates in a production Greenplum Database system should be signed by a certificate authority (CA) so that clients can authenticate the server. The CA may be local if all clients are local to the organization.
- Client connections to Greenplum Database should use SSL encryption whenever the connection goes through an insecure link.
- A symmetric encryption scheme, where the same key is used to both encrypt and decrypt, has better performance than an asymmetric scheme and should be used when the key can be shared safely.
- Use functions from the pgcrypto module to encrypt data on disk. The data is encrypted and decrypted in the database process, so it is important to secure the client connection with SSL to avoid transmitting unencrypted data.
- Use the gpfdists protocol to secure ETL data as it is loaded into or unloaded from the database. See Encrypting gpfdist Connections.
Key Management
Whether you are using symmetric (single private key) or asymmetric (public and private key) cryptography, it is important to store the master or private key securely. There are many options for storing encryption keys, for example, on a file system, key vault, encrypted USB, trusted platform module (TPM), or hardware security module (HSM).
Consider the following questions when planning for key management:
- Where will the keys be stored?
- When should keys expire?
- How are keys protected?
- How are keys accessed?
- How can keys be recovered and revoked?
The Open Web Application Security Project (OWASP) provides a very comprehensive guide to securing encryption keys.
The pgcrypto module for Greenplum Database provides functions for encrypting data at rest in the database. Administrators can encrypt columns with sensitive information, such as social security numbers or credit card numbers, to provide an extra layer of protection. Database data stored in encrypted form cannot be read by users who do not have the encryption key, and the data cannot be read directly from disk.
pgcrypto is installed by default when you install Greenplum Database. You must explicitly enable pgcrypto in each database in which you want to use the module.
pgcrypto allows PGP encryption using symmetric and asymmetric encryption. Symmetric encryption encrypts and decrypts data using the same key and is faster than asymmetric encryption. It is the preferred method in an environment where exchanging secret keys is not an issue. With asymmetric encryption, a public key is used to encrypt data and a private key is used to decrypt data. This is slower then symmetric encryption and it requires a stronger key.
Using pgcrypto always comes at the cost of performance and maintainability. It is important to use encryption only with the data that requires it. Also, keep in mind that you cannot search encrypted data by indexing the data.
Before you implement in-database encryption, consider the following PGP limitations.
- No support for signing. That also means that it is not checked whether the encryption sub-key belongs to the master key.
- No support for encryption key as master key. This practice is generally discouraged, so this limitation should not be a problem.
- No support for several subkeys. This may seem like a problem, as this is common practice. On the other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as the usage scenario is rather different.
Greenplum Database is compiled with zlib by default; this allows PGP encryption functions to compress data before encrypting. When compiled with OpenSSL, more algorithms will be available.
Because pgcrypto functions run inside the database server, the data and passwords move between pgcrypto and the client application in clear-text. For optimal security, you should connect locally or use SSL connections and you should trust both the system and database administrators.
pgcrypto configures itself according to the findings of the main PostgreSQL configure script.
When compiled with zlib
, pgcrypto encryption functions are able to compress data before encrypting.
Pgcrypto has various levels of encryption ranging from basic to advanced built-in functions. The following table shows the supported encryption algorithms.
Creating PGP Keys
To use PGP asymmetric encryption in Greenplum Database, you must first create public and private keys and install them.
As root, execute the following command and choose option 1 from the menu:
Respond to the prompts and follow the instructions, as shown in this example:
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) Press enter to accept default key size
Requested keysize is 2048 bits
Please specify how long the key should be valid.
0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years
Key is valid for? (0) 365
Key expires at Wed 13 Jan 2016 10:35:39 AM PST
Is this correct? (y/N) y
GnuPG needs to construct a user ID to identify your key.
Real name: John Doe
Email address: jdoe@email.com
Comment:
You selected this USER-ID:
"John Doe <jdoe@email.com>"
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.
*\(For this demo the passphrase is blank.\)*
can't connect to `/root/.gnupg/S.gpg-agent': No such file or directory
You don't want a passphrase - this is probably a *bad* idea!
I will do it anyway. You can change your passphrase at any time,
using this program with the option "--edit-key".
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 2027CC30 marked as ultimately trusted
public and secret key created and signed.
gpg: checking the trustdbgpg:
3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2016-01-13
pub 2048R/2027CC30 2015-01-13 [expires: 2016-01-13]
Key fingerprint = 7EDA 6AD0 F5E0 400F 4D45 3259 077D 725E 2027 CC30
uid John Doe <jdoe@email.com>
sub 2048R/4FD2EFBB 2015-01-13 [expires: 2016-01-13]
List the PGP keys by entering the following command:
``` gpg —list-secret-keys
sec 2048R/2027CC30 2015-01-13 [expires: 2016-01-13] uid John Doe jdoe@email.com ssb 2048R/4FD2EFBB 2015-01-13
```
2027CC30 is the public key and will be used to *encrypt* data in the database. 4FD2EFBB is the private (secret) key and will be used to *decrypt* data.
Export the keys using the following commands:
# gpg -a --export 4FD2EFBB > public.key
# gpg -a --export-secret-keys 2027CC30 > secret.key
See the documentation for for more information about PGP encryption functions.
Encrypting Data in Tables using PGP
This section shows how to encrypt data inserted into a column using the PGP keys you generated.
Dump the contents of the
public.key
file and then copy it to the clipboard:Enable the
pgcrypto
extension:CREATE EXTENSION pgcrypto;
Create a table called
userssn
and insert some sensitive data, social security numbers for Bob and Alice, in this example. Paste the public.key contents after “dearmor(“.CREATE TABLE userssn( ssn_id SERIAL PRIMARY KEY,
username varchar(100), ssn bytea);
INSERT INTO userssn(username, ssn)
SELECT robotccs.username, pgp_pub_encrypt(robotccs.ssn, keys.pubkey) AS ssn
FROM (
VALUES ('Alice', '123-45-6788'), ('Bob', '123-45-6799'))
AS robotccs(username, ssn)
CROSS JOIN (SELECT dearmor('-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)
mQENBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh
2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX
R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V
. . .
WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8Hkk8qb5x/
HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlGWE8pvgEx
/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojDyC65KJci
Pv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv
=XZ8J
-----END PGP PUBLIC KEY BLOCK-----') AS pubkey) AS keys;
Verify that the
ssn
column is encrypted.test_db=# select * from userssn;
ssn_id | 1
username | Alice
ssn | \301\300L\003\235M%_O\322\357\273\001\010\000\272\227\010\341\216\360\217C\020\261)_\367
7u\270*\304\361\355\220\021\330"\200%\264\274}R\213\377\363\235\366\030\023)\364!\331\303\237t\277=
f \015\004\242\231\263\225%\032\271a\001\035\277\021\375X\232\304\305/\340\334\0131\325\344[~\362\0
37-\251\336\303\340\377_\011\275\301/MY\334\343\245\244\372y\257S\374\230\346\277\373W\346\230\276\
017fi\226Q\307\012\326\3646\000\326\005:E\364W\252=zz\010(:\343Y\237\257iqU\0326\350=v0\362\327\350\
315G^\027:K_9\254\362\354\215<\001\304\357\331\355\323,\302\213Fe\265\315\232\367\254\245%(\\\373
4\254\230\331\356\006B\257\333\326H\022\013\353\216F?\023\220\370\035vH5/\227\344b\322\227\026\362=\
42\033\322<\001}\243\224;)\030zqX\214\340\221\035\275U\345\327\214\032\351\223c\2442\345\304K\016\
011\214\307\227\237\270\026`R\205\205a~1\263\236[\037C\260\031\205\374\245\317\033k|\366\253\037
---------+--------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------
ssn_id | 2
username | Bob
ssn | \301\300L\003\235M%_O\322\357\273\001\007\377t>\345\343,\200\256\272\300\012\033M4\265\032L
L[v\262k\244\2435\264\232B\357\370d9\375\011\002\327\235<\246\210b\030\012\337@\226Z\361\246\032\00
1\000\370\370\366\013\022\357\005i\202~\005\\z\301o\012\230Z\014\362\244\324&\243g\351\362\325\375
\213\032\226$\2751\256XR\346k\266\030\234\267\201vUh\004\250\337A\231\223u\247\366/i\022\275\276\350\2
20\316\306|\203+\010\261;\232\254tp\255\243\261\373Rq;\316w\357\006\207\374U\333\365\365\245hg\031\005
\322\347ea\220\015l\212g\337\264\336b\263\004\311\210.4\340G+\221\274D\035\375\2216\241`\346a0\273wE\2
12\342y^\202\262|A7\202t\240\333p\345G\373\253\243oCO\011\360\247\211\014\024{\272\271\322<\001\267
\347\240\005\213\0078\036\210\307$\317\322\311\222\035\354\006<\266\264\004\376\251q\256\220(+\030\
3270\013c\327\272\212%\363\033\252\322\337\354\276\225\232\201\212^\304\210\2269@\3230\370{
Extract the public.key ID from the database:
This shows that the PGP key ID used to encrypt the
ssn
column is 9D4D255F4FD2EFBB. It is recommended to perform this step whenever a new key is created and then store the ID for tracking.You can use this key to see which key pair was used to encrypt the data:
SELECT username, pgp_key_id(ssn) As key_used FROM userssn; username | Bob
key_used | 9D4D255F4FD2EFBB
---------+-----------------
username | Alice
key_used | 9D4D255F4FD2EFBB
Decrypt the data using the private key.
``` SELECT username, pgp_pub_decrypt(ssn, keys.privkey)
AS decrypted_ssn FROM userssn
CROSS JOIN
(SELECT dearmor('-----BEGIN PGP PRIVATE KEY BLOCK-----
Version: GnuPG v2.0.14 (GNU/Linux)
lQOYBFS1Zf0BCADNw8Qvk1V1C36Kfcwd3Kpm/dijPfRyyEwB6PqKyA05jtWiXZTh 2His1ojSP6LI0cSkIqMU9LAlncecZhRIhBhuVgKlGSgd9texg2nnSL9Admqik/yX R5syVKG+qcdWuvyZg9oOOmeyjhc3n+kkbRTEMuM3flbMs8shOwzMvstCUVmuHU/V vG5rJAe8PuYDSJCJ74I6w7SOH3RiRIc7IfL6xYddV42l3ctd44bl8/i71hq2UyN2 /Hbsjii2ymg7ttw3jsWAx2gP9nssDgoy8QDy/o9nNqC8EGlig96ZFnFnE6Pwbhn+ ic8MD0lK5/GAlR6Hc0ZIHf8KEcavruQlikjnABEBAAEAB/wNfjjvP1brRfjjIm/j XwUNm+sI4v2Ur7qZC94VTukPGf67lvqcYZJuqXxvZrZ8bl6mvl65xEUiZYy7BNA8 fe0PaM4Wy+Xr94Cz2bPbWgawnRNN3GAQy4rlBTrvqQWy+kmpbd87iTjwZidZNNmx 02iSzraq41Rt0Zx21Jh4rkpF67ftmzOH0vlrS0bWOvHUeMY7tCwmdPe9HbQeDlPr n9CllUqBn4/acTtCClWAjREZn0zXAsNixtTIPC1V+9nO9YmecMkVwNfIPkIhymAM OPFnuZ/Dz1rCRHjNHb5j6ZyUM5zDqUVnnezktxqrOENSxm0gfMGcpxHQogUMzb7c 6UyBBADSCXHPfo/VPVtMm5p1yGrNOR2jR2rUj9+poZzD2gjkt5G/xIKRlkB4uoQl emu27wr9dVEX7ms0nvDq58iutbQ4d0JIDlcHMeSRQZluErblB75Vj3HtImblPjpn 4Jx6SWRXPUJPGXGI87u0UoBH0Lwij7M2PW7l1ao+MLEA9jAjQwQA+sr9BKPL4Ya2 r5nE72gsbCCLowkC0rdldf1RGtobwYDMpmYZhOaRKjkOTMG6rCXJxrf6LqiN8w/L /gNziTmch35MCq/MZzA/bN4VMPyeIlwzxVZkJLsQ7yyqX/A7ac7B7DH0KfXciEXW MSOAJhMmklW1Q1RRNw3cnYi8w3q7X40EAL/w54FVvvPqp3+sCd86SAAapM4UO2R3 tIsuNVemMWdgNXwvK8AJsz7VreVU5yZ4B8hvCuQj1C7geaN/LXhiT8foRsJC5o71 Bf+iHC/VNEv4k4uDb4lOgnHJYYyifB1wC+nn/EnXCZYQINMia1a4M6Vqc/RIfTH4 nwkZt/89LsAiR/20HHRlc3Qga2V5IDx0ZXN0a2V5QGVtYWlsLmNvbT6JAT4EEwEC ACgFAlS1Zf0CGwMFCQHhM4AGCwkIBwMCBhUIAgkKCwQWAgMBAh4BAheAAAoJEAd9 cl4gJ8wwbfwH/3VyVsPkQl1owRJNxvXGt1bY7BfrvU52yk+PPZYoes9UpdL3CMRk 8gAM9bx5Sk08q2UXSZLC6fFOpEW4uWgmGYf8JRoC3ooezTkmCBW8I1bU0qGetzVx opdXLuPGCE7hVWQe9HcSntiTLxGov1mJAwO7TAoccXLbyuZh9Rf5vLoQdKzcCyOH h5IqXaQOT100TeFeEpb9TIiwcntg3WCSU5P0DGoUAOanjDZ3KE8Qp7V74fhG1EZV zHb8FajR62CXSHFKqpBgiNxnTOk45NbXADn4eTUXPSnwPi46qoAp9UQogsfGyB1X DOTB2UOqhutAMECaM7VtpePv79i0Z/NfnBedA5gEVLVl/QEIANabFdQ+8QMCADOi pM1bF/JrQt3zUoc4BTqICaxdyzAfz0tUSf/7Zro2us99GlARqLWd8EqJcl/xmfcJ iZyUam6ZAzzFXCgnH5Y1sdtMTJZdLp5WeOjwgCWG/ZLu4wzxOFFzDkiPv9RDw6e5 MNLtJrSp4hS5o2apKdbO4Ex83O4mJYnav/rEiDDCWU4T0lhv3hSKCpke6LcwsX+7 liozp+aNmP0Ypwfi4hR3UUMP70+V1beFqW2JbVLz3lLLouHRgpCzla+PzzbEKs16 jq77vG9kqZTCIzXoWaLljuitRlfJkO3vQ9hOv/8yAnkcAmowZrIBlyFg2KBzhunY mN2YvkUAEQEAAQAH/A7r4hDrnmzX3QU6FAzePlRB7niJtE2IEN8AufF05Q2PzKU/ c1S72WjtqMAIAgYasDkOhfhcxanTneGuFVYggKT3eSDm1RFKpRjX22m0zKdwy67B Mu95V2Oklul6OCm8dO6+2fmkGxGqc4ZsKy+jQxtxK3HG9YxMC0dvA2v2C5N4TWi3 Utc7zh//k6IbmaLd7F1d7DXt7Hn2Qsmo8I1rtgPE8grDToomTnRUodToyejEqKyI ORwsp8n8g2CSFaXSrEyU6HbFYXSxZealhQJGYLFOZdR0MzVtZQCn/7n+IHjupndC Nd2a8DVx3yQS3dAmvLzhFacZdjXi31wvj0moFOkEAOCz1E63SKNNksniQ11lRMJp gaov6Ux/zGLMstwTzNouI+Kr8/db0GlSAy1Z3UoAB4tFQXEApoX9A4AJ2KqQjqOX cZVULenfDZaxrbb9Lid7ZnTDXKVyGTWDF7ZHavHJ4981mCW17lU11zHBB9xMlx6p dhFvb0gdy0jSLaFMFr/JBAD0fz3RrhP7e6Xll2zdBqGthjC5S/IoKwwBgw6ri2yx LoxqBr2pl9PotJJ/JUMPhD/LxuTcOZtYjy8PKgm5jhnBDq3Ss0kNKAY1f5EkZG9a 6I4iAX/NekqSyF+OgBfC9aCgS5RG8hYoOCbp8na5R3bgiuS8IzmVmm5OhZ4MDEwg nQP7BzmR0p5BahpZ8r3Ada7FcK+0ZLLRdLmOYF/yUrZ53SoYCZRzU/GmtQ7LkXBh Gjqied9Bs1MHdNUolq7GaexcjZmOWHEf6w9+9M4+vxtQq1nkIWqtaphewEmd5/nf EP3sIY0EAE3mmiLmHLqBju+UJKMNwFNeyMTqgcg50ISH8J9FRIkBJQQYAQIADwUC VLVl/QIbDAUJAeEzgAAKCRAHfXJeICfMMOHYCACFhInZA9uAM3TC44l+MrgMUJ3r W9izrO48WrdTsxR8WkSNbIxJoWnYxYuLyPb/shc9k65huw2SSDkj//0fRrI61FPH QNPSvz62WH+N2lasoUaoJjb2kQGhLOnFbJuevkyBylRz+hI/+8rJKcZOjQkmmK8H kk8qb5x/HMUc55H0g2qQAY0BpnJHgOOQ45Q6pk3G2/7Dbek5WJ6K1wUrFy51sNlG WE8pvgEx/UUZB+dYqCwtvX0nnBu1KNCmk2AkEcFK3YoliCxomdOxhFOv9AKjjojD yC65KJciPv2MikPS2fKOAg1R3LpMa8zDEtl4w3vckPQNrQNnYuUtfj6ZoCxv =fa+6 ——-END PGP PRIVATE KEY BLOCK——-‘) AS privkey) AS keys;
username | decrypted_ssn —————+———————- Alice | 123-45-6788 Bob | 123-45-6799 (2 rows)
```
If you created a key with passphrase, you may have to enter it here. However for the purpose of this example, the passphrase is blank.
The gpfdists
protocol is a secure version of the gpfdist
protocol that securely identifies the file server and the Greenplum Database and encrypts the communications between them. Using gpfdists
protects against eavesdropping and man-in-the-middle attacks.
The gpfdists
protocol implements client/server SSL security with the following notable features:
- Client certificates are required.
- Multilingual certificates are not supported.
- A Certificate Revocation List (CRL) is not supported.
- The TLSv1 protocol is used with the
TLS_RSA_WITH_AES_128_CBC_SHA
encryption algorithm. These SSL parameters cannot be changed. - SSL renegotiation is supported.
- The SSL ignore host mismatch parameter is set to false.
- Private keys containing a passphrase are not supported for the
gpfdist
file server (server.key) or for the Greenplum Database (client.key). - It is the user’s responsibility to issue certificates that are appropriate for the operating system in use. Generally, converting certificates to the required format is supported, for example using the SSL Converter at https://www.sslshopper.com/ssl-converter.html.
A gpfdist
server started with the --ssl
option can only communicate with the gpfdists
protocol. A gpfdist
server started without the --ssl
option can only communicate with the gpfdist
protocol. For more detail about gpfdist
refer to the Greenplum Database Administrator Guide.
There are two ways to enable the gpfdists
protocol:
- Run
gpfdist
with the--ssl
option and then use thegpfdists
protocol in theLOCATION
clause of aCREATE EXTERNAL TABLE
statement. - Use a YAML control file with the SSL option set to true and run
gpload
. Runninggpload
starts thegpfdist
server with the--ssl
option and then uses thegpfdists
protocol.
When using gpfdists, the following client certificates must be located in the $PGDATA/gpfdists
directory on each segment:
- The client certificate file,
client.crt
- The client private key file,
client.key
- The trusted certificate authorities,
root.crt
Important: Do not protect the private key with a passphrase. The server does not prompt for a passphrase for the private key, and loading data fails with an error if one is required.
When using gpload
with SSL you specify the location of the server certificates in the YAML control file. When using gpfdist
with SSL, you specify the location of the server certificates with the —ssl option.
The following example shows how to securely load data into an external table. The example creates a readable external table named ext_expenses
from all files with the txt
extension, using the gpfdists
protocol. The files are formatted with a pipe (|
) as the column delimiter and an empty space as null.
Run
gpfdist
with the--ssl
option on the segment hosts.
SHA2 algorithms were added to OpenSSL in version 0.9.8. For older versions, pgcrypto will use built-in code2 Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers, which need to be supported explicitly. AES is included in OpenSSL since version 0.9.7. For older versions, pgcrypto will use built-in code.