Tutorial: Writing an ingestion spec
For this tutorial, we’ll assume you’ve already downloaded Apache Druid as described in the single-machine quickstart and have it running on your local machine.
It will also be helpful to have finished , Tutorial: Querying data, and .
Suppose we have the following network flow data:
- : IP address of sender
srcPort
: Port of senderdstIP
: IP address of receiverdstPort
: Port of receiverprotocol
: IP protocol numberpackets
: number of packets transmittedbytes
: number of bytes transmittedcost
: the cost of sending the traffic
Save the JSON contents above into a file called ingestion-tutorial-data.json
in quickstart/
.
Let’s walk through the process of defining an ingestion spec that can load this data.
For this tutorial, we will be using the native batch indexing task. When using other task types, some aspects of the ingestion spec will differ, and this tutorial will point out such areas.
Defining the schema
The core element of a Druid ingestion spec is the dataSchema
. The dataSchema
defines how to parse input data into a set of columns that will be stored in Druid.
Let’s start with an empty dataSchema
and add fields to it as we progress through the tutorial.
Create a new file called ingestion-tutorial-index.json
in quickstart/
with the following contents:
"dataSchema" : {}
We will be making successive edits to this ingestion spec as we progress through the tutorial.
The datasource name is specified by the dataSource
parameter in the dataSchema
.
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
}
Let’s call the tutorial datasource ingestion-tutorial
.
Time column
The dataSchema
needs to know how to extract the main timestamp field from the input data.
The timestamp column in our input data is named “ts”, containing ISO 8601 timestamps, so let’s add a timestampSpec
with that information to the dataSchema
:
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
}
}
Now that we’ve defined the time column, let’s look at definitions for other columns.
Druid supports the following column types: String, Long, Float, Double. We will see how these are used in the following sections.
Before we move on to how we define our other non-time columns, let’s discuss rollup
first.
Rollup
When ingesting data, we must consider whether we wish to use rollup or not.
If rollup is disabled, then all columns are treated as “dimensions” and no pre-aggregation occurs.
For this tutorial, let’s enable rollup. This is specified with a granularitySpec
on the dataSchema
.
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"granularitySpec" : {
"rollup" : true
}
}
Choosing dimensions and metrics
For this example dataset, the following is a sensible split for “dimensions” and “metrics”:
- Dimensions: srcIP, srcPort, dstIP, dstPort, protocol
- Metrics: packets, bytes, cost
The dimensions here are a group of properties that identify a unidirectional flow of IP traffic, while the metrics represent facts about the IP traffic flow specified by a dimension grouping.
Let’s look at how to define these dimensions and metrics within the ingestion spec.
Dimensions
Dimensions are specified with a dimensionsSpec
inside the dataSchema
.
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"granularitySpec" : {
"rollup" : true
}
}
Each dimension has a name
and a type
, where type
can be “long”, “float”, “double”, or “string”.
Note that srcIP
is a “string” dimension; for string dimensions, it is enough to specify just a dimension name, since “string” is the default dimension type.
Also note that protocol
is a numeric value in the input data, but we are ingesting it as a “string” column; Druid will coerce the input longs to strings during ingestion.
Strings vs. Numerics
Should a numeric input be ingested as a numeric dimension or as a string dimension?
Numeric dimensions have the following pros/cons relative to String dimensions:
- Pros: Numeric representation can result in smaller column sizes on disk and lower processing overhead when reading values from the column
- Cons: Numeric dimensions do not have indices, so filtering on them will often be slower than filtering on an equivalent String dimension (which has bitmap indices)
Metrics
Metrics are specified with a metricsSpec
inside the dataSchema
:
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"rollup" : true
}
}
When defining a metric, it is necessary to specify what type of aggregation should be performed on that column during rollup.
Here we have defined long sum aggregations on the two long metric columns, packets
and bytes
, and a double sum aggregation for the cost
column.
Note that the metricsSpec
is on a different nesting level than dimensionSpec
or parseSpec
; it belongs on the same nesting level as parser
within the dataSchema
.
Note that we have also defined a count
aggregator. The count aggregator will track how many rows in the original input data contributed to a “rolled up” row in the final ingested data.
If we were not using rollup, all columns would be specified in the dimensionsSpec
, e.g.:
Define granularities
At this point, we are done defining the parser
and metricsSpec
within the dataSchema
and we are almost done writing the ingestion spec.
- Type of granularitySpec: the
uniform
granularity spec defines segments with uniform interval sizes. For example, all segments cover an hour’s worth of data. - The segment granularity: what size of time interval should a single segment contain data for? e.g.,
DAY
,WEEK
- The bucketing granularity of the timestamps in the time column (referred to as
queryGranularity
)
Segment granularity
Segment granularity is configured by the segmentGranularity
property in the granularitySpec
. For this tutorial, we’ll create hourly segments:
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "protocol", "type" : "string" }
]
},
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"rollup" : true
}
}
Our input data has events from two separate hours, so this task will generate two segments.
Query granularity
The query granularity is configured by the queryGranularity
property in the granularitySpec
. For this tutorial, let’s use minute granularity:
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE",
"rollup" : true
}
}
To see the effect of the query granularity, let’s look at this row from the raw input data:
{"ts":"2018-01-01T01:03:29Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2", "srcPort":5000, "dstPort":7000, "protocol": 6, "packets":60, "bytes":6000, "cost": 4.3}
When this row is ingested with minute queryGranularity, Druid will floor the row’s timestamp to minute buckets:
{"ts":"2018-01-01T01:03:00Z","srcIP":"1.1.1.1", "dstIP":"2.2.2.2", "srcPort":5000, "dstPort":7000, "protocol": 6, "packets":60, "bytes":6000, "cost": 4.3}
Define an interval (batch only)
For batch tasks, it is necessary to define a time interval. Input rows with timestamps outside of the time interval will not be ingested.
The interval is also specified in the granularitySpec
:
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE",
"intervals" : ["2018-01-01/2018-01-02"],
"rollup" : true
}
}
We’ve now finished defining our dataSchema
. The remaining steps are to place the dataSchema
we created into an ingestion task spec, and specify the input source.
The dataSchema
is shared across all task types, but each task type has its own specification format. For this tutorial, we will use the native batch ingestion task:
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE",
"intervals" : ["2018-01-01/2018-01-02"],
"rollup" : true
}
}
}
}
Define the input source
Now let’s define our input source, which is specified in an ioConfig
object. Each task type has its own type of ioConfig
. To read input data, we need to specify an inputSource
. The example netflow data we saved earlier needs to be read from a local file, which is configured below:
Since our input data is represented as JSON strings, we’ll use a inputFormat
to json
format:
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/",
"filter" : "ingestion-tutorial-data.json"
},
"inputFormat" : {
"type" : "json"
}
{
"type" : "index_parallel",
"spec" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE",
"intervals" : ["2018-01-01/2018-01-02"],
"rollup" : true
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/",
"filter" : "ingestion-tutorial-data.json"
},
"inputFormat" : {
"type" : "json"
}
}
}
}
Each ingestion task has a tuningConfig
section that allows users to tune various ingestion parameters.
As an example, let’s add a tuningConfig
that sets a target segment size for the native batch ingestion task:
"tuningConfig" : {
"type" : "index_parallel",
"partitionsSpec": {
"type": "dynamic",
"maxRowsPerSegment" : 5000000
}
}
Note that each ingestion task has its own type of tuningConfig
.
Final spec
We’ve finished defining the ingestion spec, it should now look like the following:
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "ingestion-tutorial",
"timestampSpec" : {
"format" : "iso",
"column" : "ts"
},
"dimensionsSpec" : {
"dimensions": [
"srcIP",
{ "name" : "srcPort", "type" : "long" },
{ "name" : "dstIP", "type" : "string" },
{ "name" : "dstPort", "type" : "long" },
{ "name" : "protocol", "type" : "string" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "packets", "fieldName" : "packets" },
{ "type" : "longSum", "name" : "bytes", "fieldName" : "bytes" },
{ "type" : "doubleSum", "name" : "cost", "fieldName" : "cost" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "HOUR",
"queryGranularity" : "MINUTE",
"intervals" : ["2018-01-01/2018-01-02"],
"rollup" : true
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/",
"filter" : "ingestion-tutorial-data.json"
},
"inputFormat" : {
"type" : "json"
}
},
"tuningConfig" : {
"type" : "index_parallel",
"partitionsSpec": {
"type": "dynamic",
"maxRowsPerSegment" : 5000000
}
}
}
}
From the apache-druid-24.0.2 package root, run the following command:
bin/post-index-task --file quickstart/ingestion-tutorial-index.json --url http://localhost:8081
After the script completes, we will query the data.
Let’s run bin/dsql
and issue a select * from "ingestion-tutorial";
query to see what data was ingested.
$ bin/dsql
Welcome to dsql, the command-line client for Druid SQL.
Type "\h" for help.
dsql> select * from "ingestion-tutorial";
┌──────────────────────────┬───────┬──────┬───────┬─────────┬─────────┬─────────┬──────────┬─────────┬─────────┐
│ __time │ bytes │ cost │ count │ dstIP │ dstPort │ packets │ protocol │ srcIP │ srcPort │
├──────────────────────────┼───────┼──────┼───────┼─────────┼─────────┼─────────┼──────────┼─────────┼─────────┤
│ 2018-01-01T01:01:00.000Z │ 6000 │ 4.9 │ 3 │ 2.2.2.2 │ 3000 │ 60 │ 6 │ 1.1.1.1 │ 2000 │
│ 2018-01-01T01:02:00.000Z │ 9000 │ 18.1 │ 2 │ 2.2.2.2 │ 7000 │ 90 │ 6 │ 1.1.1.1 │ 5000 │
│ 2018-01-01T01:03:00.000Z │ 6000 │ 4.3 │ 1 │ 2.2.2.2 │ 7000 │ 60 │ 6 │ 1.1.1.1 │ 5000 │
│ 2018-01-01T02:33:00.000Z │ 30000 │ 56.9 │ 2 │ 8.8.8.8 │ 5000 │ 300 │ 17 │ 7.7.7.7 │ 4000 │
│ 2018-01-01T02:35:00.000Z │ 30000 │ 46.3 │ 1 │ 8.8.8.8 │ 5000 │ 300 │ 17 │ 7.7.7.7 │ 4000 │
└──────────────────────────┴───────┴──────┴───────┴─────────┴─────────┴─────────┴──────────┴─────────┴─────────┘
Retrieved 5 rows in 0.12s.
dsql>