Select Expression
From this syntax definition, selectExpr
can contain:
- suffix of time series path
- function
- Built-in aggregation functions, see for details.
- Time series generation function
- User-defined functions, see UDF for details.
- expressions
- Arithmetic operation expressions
- Time series generating nested expressions
- Aggregate query nested expressions
- Numeric constants (could be used in expressions only)
Unary Arithmetic Operators
Supported operators: +
, -
Supported input data types: INT32
, INT64
, FLOAT
and DOUBLE
Output data type: consistent with the input data type
Binary Arithmetic Operators
Supported operators: +
, -
, *
, /
, %
Supported input data types: INT32
, INT64
, FLOAT
and DOUBLE
Output data type: DOUBLE
Note: Only when the left operand and the right operand under a certain timestamp are not null
, the binary arithmetic operation will have an output value.
Example
select s1, - s1, s2, + s2, s1 + s2, s1 - s2, s1 * s2, s1 / s2, s1 % s2 from root.sg.d1
Result:
+-----------------------------+-------------+--------------+-------------+-------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+
| Time|root.sg.d1.s1|-root.sg.d1.s1|root.sg.d1.s2|root.sg.d1.s2|root.sg.d1.s1 + root.sg.d1.s2|root.sg.d1.s1 - root.sg.d1.s2|root.sg.d1.s1 * root.sg.d1.s2|root.sg.d1.s1 / root.sg.d1.s2|root.sg.d1.s1 % root.sg.d1.s2|
+-----------------------------+-------------+--------------+-------------+-------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+
|1970-01-01T08:00:00.001+08:00| 1.0| -1.0| 1.0| 1.0| 2.0| 0.0| 1.0| 1.0| 0.0|
|1970-01-01T08:00:00.002+08:00| 2.0| -2.0| 2.0| 2.0| 4.0| 0.0| 4.0| 1.0| 0.0|
|1970-01-01T08:00:00.003+08:00| 3.0| -3.0| 3.0| 3.0| 6.0| 0.0| 9.0| 1.0| 0.0|
|1970-01-01T08:00:00.004+08:00| 4.0| -4.0| 4.0| 4.0| 8.0| 0.0| 16.0| 1.0| 0.0|
|1970-01-01T08:00:00.005+08:00| 5.0| -5.0| 5.0| 5.0| 10.0| 0.0| 25.0| 1.0| 0.0|
+-----------------------------+-------------+--------------+-------------+-------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+
Total line number = 5
It costs 0.014s
The time series generating function takes several time series as input and outputs one time series. Unlike the aggregation function, the result set of the time series generating function has a timestamp column.
All time series generating functions can accept * as input.
IoTDB supports hybrid queries of time series generating function queries and raw data queries.
Mathematical Functions
Currently, IoTDB supports the following mathematical functions. The behavior of these mathematical functions is consistent with the behavior of these functions in the Java Math standard library.
Example:
select s1, sin(s1), cos(s1), tan(s1) from root.sg1.d1 limit 5 offset 1000;
Result:
+-----------------------------+-------------------+-------------------+--------------------+-------------------+
| Time| root.sg1.d1.s1|sin(root.sg1.d1.s1)| cos(root.sg1.d1.s1)|tan(root.sg1.d1.s1)|
+-----------------------------+-------------------+-------------------+--------------------+-------------------+
|2020-12-10T17:11:49.037+08:00|7360723084922759782| 0.8133527237573284| 0.5817708713544664| 1.3980636773094157|
|2020-12-10T17:11:49.038+08:00|4377791063319964531|-0.8938962705202537| 0.4482738644511651| -1.994085181866842|
|2020-12-10T17:11:49.039+08:00|7972485567734642915| 0.9627757585308978|-0.27030138509681073|-3.5618602479083545|
|2020-12-10T17:11:49.040+08:00|2508858212791964081|-0.6073417341629443| -0.7944406950452296| 0.7644897069734913|
|2020-12-10T17:11:49.041+08:00|2817297431185141819|-0.8419358900502509| -0.5395775727782725| 1.5603611649667768|
+-----------------------------+-------------------+-------------------+--------------------+-------------------+
Total line number = 5
It costs 0.008s
String Processing Functions
Currently, IoTDB supports the following string processing functions:
Function Name | Allowed Input Series Data Types | Required Attributes | Output Series Data Type | Description |
---|---|---|---|---|
STRING_CONTAINS | TEXT | s : the sequence to search for | BOOLEAN | Determine whether s is in the string |
STRING_MATCHES | TEXT | regex : the regular expression to which the string is to be matched | BOOLEAN | Determine whether the string can be matched by regex |
Example:
select s1, string_contains(s1, 's'='warn'), string_matches(s1, 'regex'='[^\\s]+37229') from root.sg1.d4;
Result:
+-----------------------------+--------------+-------------------------------------------+------------------------------------------------------+
| Time|root.sg1.d4.s1|string_contains(root.sg1.d4.s1, "s"="warn")|string_matches(root.sg1.d4.s1, "regex"="[^\\s]+37229")|
+-----------------------------+--------------+-------------------------------------------+------------------------------------------------------+
|1970-01-01T08:00:00.001+08:00| warn:-8721| true| false|
|1970-01-01T08:00:00.002+08:00| error:-37229| false| true|
|1970-01-01T08:00:00.003+08:00| warn:1731| true| false|
+-----------------------------+--------------+-------------------------------------------+------------------------------------------------------+
Total line number = 3
It costs 0.007s
Currently, IoTDB supports the following selector functions:
Function Name | Allowed Input Series Data Types | Required Attributes | Output Series Data Type | Description |
---|---|---|---|---|
TOP_K | INT32 / INT64 / FLOAT / DOUBLE / TEXT | k : the maximum number of selected data points, must be greater than 0 and less than or equal to 1000 | Same type as the input series | Returns k data points with the largest values in a time series. |
BOTTOM_K | INT32 / INT64 / FLOAT / DOUBLE / TEXT | k : the maximum number of selected data points, must be greater than 0 and less than or equal to 1000 | Same type as the input series | Returns k data points with the smallest values in a time series. |
Example:
select s1, top_k(s1, 'k'='2'), bottom_k(s1, 'k'='2') from root.sg1.d2 where time > 2020-12-10T20:36:15.530+08:00;
Result:
+-----------------------------+--------------------+------------------------------+---------------------------------+
| Time| root.sg1.d2.s1|top_k(root.sg1.d2.s1, "k"="2")|bottom_k(root.sg1.d2.s1, "k"="2")|
+-----------------------------+--------------------+------------------------------+---------------------------------+
|2020-12-10T20:36:15.531+08:00| 1531604122307244742| 1531604122307244742| null|
|2020-12-10T20:36:15.532+08:00|-7426070874923281101| null| null|
|2020-12-10T20:36:15.533+08:00|-7162825364312197604| -7162825364312197604| null|
|2020-12-10T20:36:15.534+08:00|-8581625725655917595| null| -8581625725655917595|
|2020-12-10T20:36:15.535+08:00|-7667364751255535391| null| -7667364751255535391|
+-----------------------------+--------------------+------------------------------+---------------------------------+
Total line number = 5
It costs 0.006s
Variation Trend Calculation Functions
Currently, IoTDB supports the following variation trend calculation functions:
select s1, time_difference(s1), difference(s1), non_negative_difference(s1), derivative(s1), non_negative_derivative(s1) from root.sg1.d1 limit 5 offset 1000;
Result:
+-----------------------------+-------------------+-------------------------------+--------------------------+---------------------------------------+--------------------------+---------------------------------------+
| Time| root.sg1.d1.s1|time_difference(root.sg1.d1.s1)|difference(root.sg1.d1.s1)|non_negative_difference(root.sg1.d1.s1)|derivative(root.sg1.d1.s1)|non_negative_derivative(root.sg1.d1.s1)|
+-----------------------------+-------------------+-------------------------------+--------------------------+---------------------------------------+--------------------------+---------------------------------------+
|2020-12-10T17:11:49.037+08:00|7360723084922759782| 1| -8431715764844238876| 8431715764844238876| -8.4317157648442388E18| 8.4317157648442388E18|
|2020-12-10T17:11:49.038+08:00|4377791063319964531| 1| -2982932021602795251| 2982932021602795251| -2.982932021602795E18| 2.982932021602795E18|
|2020-12-10T17:11:49.039+08:00|7972485567734642915| 1| 3594694504414678384| 3594694504414678384| 3.5946945044146785E18| 3.5946945044146785E18|
|2020-12-10T17:11:49.040+08:00|2508858212791964081| 1| -5463627354942678834| 5463627354942678834| -5.463627354942679E18| 5.463627354942679E18|
|2020-12-10T17:11:49.041+08:00|2817297431185141819| 1| 308439218393177738| 308439218393177738| 3.0843921839317773E17| 3.0843921839317773E17|
+-----------------------------+-------------------+-------------------------------+--------------------------+---------------------------------------+--------------------------+---------------------------------------+
Total line number = 5
It costs 0.014s
Constant Timeseries Generating Functions
The constant timeseries generating function is used to generate a timeseries in which the values of all data points are the same.
The constant timeseries generating function accepts one or more timeseries inputs, and the timestamp set of the output data points is the union of the timestamp sets of the input timeseries.
Currently, IoTDB supports the following constant timeseries generating functions:
Function Name | Required Attributes | Output Series Data Type | Description |
---|---|---|---|
CONST | value : the value of the output data pointtype : the type of the output data point, it can only be INT32 / INT64 / FLOAT / DOUBLE / BOOLEAN / TEXT | Determined by the required attribute type | Output the user-specified constant timeseries according to the attributes value and type . |
PI | None | DOUBLE | Data point value: a double value of π , the ratio of the circumference of a circle to its diameter, which is equals to Math.PI in the Java Standard Library. |
E | None | DOUBLE | Data point value: a double value of e , the base of the natural logarithms, which is equals to Math.E in the Java Standard Library. |
Example:
Result:
select s1, s2, const(s1, 'value'='1024', 'type'='INT64'), pi(s2), e(s1, s2) from root.sg1.d1;
+-----------------------------+--------------+--------------+-----------------------------------------------------+------------------+---------------------------------+
| Time|root.sg1.d1.s1|root.sg1.d1.s2|const(root.sg1.d1.s1, "value"="1024", "type"="INT64")|pi(root.sg1.d1.s2)|e(root.sg1.d1.s1, root.sg1.d1.s2)|
+-----------------------------+--------------+--------------+-----------------------------------------------------+------------------+---------------------------------+
|1970-01-01T08:00:00.000+08:00| 0.0| 0.0| 1024| 3.141592653589793| 2.718281828459045|
|1970-01-01T08:00:00.001+08:00| 1.0| null| 1024| null| 2.718281828459045|
|1970-01-01T08:00:00.002+08:00| 2.0| null| 1024| null| 2.718281828459045|
|1970-01-01T08:00:00.003+08:00| null| 3.0| null| 3.141592653589793| 2.718281828459045|
|1970-01-01T08:00:00.004+08:00| null| 4.0| null| 3.141592653589793| 2.718281828459045|
+-----------------------------+--------------+--------------+-----------------------------------------------------+------------------+---------------------------------+
Total line number = 5
It costs 0.005s
Data Type Conversion Function
The IoTDB currently supports 6 data types, including INT32, INT64 ,FLOAT, DOUBLE, BOOLEAN, TEXT. When we query or evaluate data, we may need to convert data types, such as TEXT to INT32, or improve the accuracy of the data, such as FLOAT to DOUBLE. Therefore, IoTDB supports the use of cast functions to convert data types.
Function Name | Required Attributes | Output Series Data Type | Series Data Type Description |
---|---|---|---|
CAST | type : the type of the output data point, it can only be INT32 / INT64 / FLOAT / DOUBLE / BOOLEAN / TEXT | Determined by the required attribute type | Converts data to the type specified by the type argument. |
Notes
- The value of type BOOLEAN is
true
, when data is converted to BOOLEAN if INT32 and INT64 are not 0, FLOAT and DOUBLE are not 0.0, TEXT is not empty string or “false”, otherwise . - The value of type INT32, INT64, FLOAT, DOUBLE are 1 or 1.0 and TEXT is “true”, when BOOLEAN data is true, otherwise 0, 0.0 or “false”.
- When TEXT is converted to INT32, INT64, or FLOAT, the TEXT is first converted to DOUBLE and then to the corresponding type, which may cause loss of precision. It will skip directly if the data can not be converted.
Syntax
Example data:
SQL:
select cast(text, 'type'='BOOLEAN'), cast(text, 'type'='INT32'), cast(text, 'type'='INT64'), cast(text, 'type'='FLOAT'), cast(text, 'type'='DOUBLE') from root.test;
Result:
+-----------------------------+--------------------------------------+------------------------------------+------------------------------------+------------------------------------+-------------------------------------+
| Time|cast(root.test.text, "type"="BOOLEAN")|cast(root.test.text, "type"="INT32")|cast(root.test.text, "type"="INT64")|cast(root.test.text, "type"="FLOAT")|cast(root.test.text, "type"="DOUBLE")|
+-----------------------------+--------------------------------------+------------------------------------+------------------------------------+------------------------------------+-------------------------------------+
|1970-01-01T08:00:00.001+08:00| true| 1| 1| 1.1| 1.1|
|1970-01-01T08:00:00.002+08:00| true| 1| 1| 1.0| 1.0|
|1970-01-01T08:00:00.003+08:00| true| null| null| null| null|
|1970-01-01T08:00:00.004+08:00| false| null| null| null| null|
+-----------------------------+--------------------------------------+------------------------------------+------------------------------------+------------------------------------+-------------------------------------+
Total line number = 4
It costs 0.078s
Condition functions are used to check whether timeseries data points satisfy some specific condition.
They return BOOLEANs.
Currently, IoTDB supports the following condition functions:
Example Data:
IoTDB> select ts from root.test;
+-----------------------------+------------+
| Time|root.test.ts|
+-----------------------------+------------+
|1970-01-01T08:00:00.001+08:00| 1|
|1970-01-01T08:00:00.002+08:00| 2|
|1970-01-01T08:00:00.003+08:00| 3|
|1970-01-01T08:00:00.004+08:00| 4|
+-----------------------------+------------+
Test 1
SQL:
select ts, on_off(ts, 'threshold'='2') from root.test;
Output:
IoTDB> select ts, on_off(ts, 'threshold'='2') from root.test;
+-----------------------------+------------+-------------------------------------+
| Time|root.test.ts|on_off(root.test.ts, "threshold"="2")|
+-----------------------------+------------+-------------------------------------+
|1970-01-01T08:00:00.001+08:00| 1| false|
|1970-01-01T08:00:00.002+08:00| 2| true|
|1970-01-01T08:00:00.003+08:00| 3| true|
|1970-01-01T08:00:00.004+08:00| 4| true|
+-----------------------------+------------+-------------------------------------+
Test 2
Sql:
select ts, in_range(ts, 'lower'='2', 'upper'='3.1') from root.test;
Output:
IoTDB> select ts, in_range(ts,'lower'='2', 'upper'='3.1') from root.test;
+-----------------------------+------------+--------------------------------------------------+
| Time|root.test.ts|in_range(root.test.ts, "lower"="2", "upper"="3.1")|
+-----------------------------+------------+--------------------------------------------------+
|1970-01-01T08:00:00.001+08:00| 1| false|
|1970-01-01T08:00:00.002+08:00| 2| true|
|1970-01-01T08:00:00.003+08:00| 3| true|
|1970-01-01T08:00:00.004+08:00| 4| false|
+-----------------------------+------------+--------------------------------------------------+
Continuous Interval Functions
The continuous interval functions are used to query all continuous intervals that meet specified conditions. They can be divided into two categories according to return value:
- Returns the start timestamp and time span of the continuous interval that meets the conditions (a time span of 0 means that only the start time point meets the conditions)
- Returns the start timestamp of the continuous interval that meets the condition and the number of points in the interval (a number of 1 means that only the start time point meets the conditions)
Function Name | Input TSDatatype | Parameters | Output TSDatatype | Function Description |
---|---|---|---|---|
ZERO_DURATION | INT32/ INT64/ FLOAT/ DOUBLE/ BOOLEAN | min :Optional with default value 0L max :Optional with default value Long.MAX_VALUE | Long | Return intervals’ start times and duration times in which the value is always 0(false), and the duration time t satisfy t >= min && t <= max . The unit of t is ms |
NON_ZERO_DURATION | INT32/ INT64/ FLOAT/ DOUBLE/ BOOLEAN | min :Optional with default value 0L max :Optional with default value Long.MAX_VALUE | Long | Return intervals’ start times and duration times in which the value is always not 0, and the duration time t satisfy t >= min && t <= max . The unit of t is ms |
ZERO_COUNT | INT32/ INT64/ FLOAT/ DOUBLE/ BOOLEAN | min :Optional with default value 1L max :Optional with default value Long.MAX_VALUE | Long | Return intervals’ start times and the number of data points in the interval in which the value is always 0(false). Data points number n satisfy n >= min && n <= max |
NON_ZERO_COUNT | INT32/ INT64/ FLOAT/ DOUBLE/ BOOLEAN | min :Optional with default value 1L max :Optional with default value Long.MAX_VALUE | Long | Return intervals’ start times and the number of data points in the interval in which the value is always not 0(false). Data points number n satisfy n >= min && n <= max |
Demonstrate
Example data:
IoTDB> select s1,s2,s3,s4,s5 from root.sg.d2;
+-----------------------------+-------------+-------------+-------------+-------------+-------------+
| Time|root.sg.d2.s1|root.sg.d2.s2|root.sg.d2.s3|root.sg.d2.s4|root.sg.d2.s5|
+-----------------------------+-------------+-------------+-------------+-------------+-------------+
|1970-01-01T08:00:00.000+08:00| 0| 0| 0.0| 0.0| false|
|1970-01-01T08:00:00.001+08:00| 1| 1| 1.0| 1.0| true|
|1970-01-01T08:00:00.002+08:00| 1| 1| 1.0| 1.0| true|
|1970-01-01T08:00:00.003+08:00| 0| 0| 0.0| 0.0| false|
|1970-01-01T08:00:00.004+08:00| 1| 1| 1.0| 1.0| true|
|1970-01-01T08:00:00.005+08:00| 0| 0| 0.0| 0.0| false|
|1970-01-01T08:00:00.006+08:00| 0| 0| 0.0| 0.0| false|
|1970-01-01T08:00:00.007+08:00| 1| 1| 1.0| 1.0| true|
+-----------------------------+-------------+-------------+-------------+-------------+-------------+
Sql:
select s1, zero_count(s1), non_zero_count(s2), zero_duration(s3), non_zero_duration(s4) from root.sg.d2;
Result:
+-----------------------------+-------------+-------------------------+-----------------------------+----------------------------+--------------------------------+
| Time|root.sg.d2.s1|zero_count(root.sg.d2.s1)|non_zero_count(root.sg.d2.s2)|zero_duration(root.sg.d2.s3)|non_zero_duration(root.sg.d2.s4)|
+-----------------------------+-------------+-------------------------+-----------------------------+----------------------------+--------------------------------+
|1970-01-01T08:00:00.000+08:00| 0| 1| null| 0| null|
|1970-01-01T08:00:00.001+08:00| 1| null| 2| null| 1|
|1970-01-01T08:00:00.002+08:00| 1| null| null| null| null|
|1970-01-01T08:00:00.003+08:00| 0| 1| null| 0| null|
|1970-01-01T08:00:00.004+08:00| 1| null| 1| null| 0|
|1970-01-01T08:00:00.005+08:00| 0| 2| null| 1| null|
|1970-01-01T08:00:00.006+08:00| 0| null| null| null| null|
|1970-01-01T08:00:00.007+08:00| 1| null| 1| null| 0|
+-----------------------------+-------------+-------------------------+-----------------------------+----------------------------+--------------------------------+
User Defined Timeseries Generating Functions
Please refer to UDF (User Defined Function).
Known Implementation UDF Libraries:
- , a UDF library about data quality, including data profiling, data quality evalution and data repairing, etc.
The following is the syntax definition of the select
clause:
selectClause
: SELECT resultColumn (',' resultColumn)*
;
resultColumn
: expression (AS ID)?
;
expression
: '(' expression ')'
| '-' expression
| expression ('*' | '/' | '%') expression
| expression ('+' | '-') expression
| functionName '(' expression (',' expression)* functionAttribute* ')'
| timeSeriesSuffixPath
;
Nested Expressions with Time Series Query
IoTDB supports the calculation of arbitrary nested expressions consisting of numbers, time series, time series generating functions (including user-defined functions) and arithmetic expressions in the select
clause.
Example
Input1:
select a,
b,
((a + 1) * 2 - 1) % 2 + 1.5,
sin(a + sin(a + sin(b))),
-(a + b) * (sin(a + b) * sin(a + b) + cos(a + b) * cos(a + b)) + 1
from root.sg1;
Result1:
Input2:
select (a + b) * 2 + sin(a) from root.sg
Result2:
+-----------------------------+----------------------------------------------+
| Time|((root.sg.a + root.sg.b) * 2) + sin(root.sg.a)|
+-----------------------------+----------------------------------------------+
|1970-01-01T08:00:00.010+08:00| 59.45597888911063|
|1970-01-01T08:00:00.020+08:00| 100.91294525072763|
|1970-01-01T08:00:00.030+08:00| 139.01196837590714|
|1970-01-01T08:00:00.040+08:00| 180.74511316047935|
|1970-01-01T08:00:00.050+08:00| 219.73762514629607|
|1970-01-01T08:00:00.060+08:00| 259.6951893788978|
|1970-01-01T08:00:00.070+08:00| 300.7738906815579|
|1970-01-01T08:00:00.090+08:00| 39.45597888911063|
|1970-01-01T08:00:00.100+08:00| 39.45597888911063|
+-----------------------------+----------------------------------------------+
Total line number = 9
It costs 0.011s
Input3:
select (a + *) / 2 from root.sg1
Result3:
+-----------------------------+-----------------------------+-----------------------------+
| Time|(root.sg1.a + root.sg1.a) / 2|(root.sg1.a + root.sg1.b) / 2|
+-----------------------------+-----------------------------+-----------------------------+
|1970-01-01T08:00:00.010+08:00| 1.0| 1.0|
|1970-01-01T08:00:00.020+08:00| 2.0| 2.0|
|1970-01-01T08:00:00.030+08:00| 3.0| 3.0|
|1970-01-01T08:00:00.040+08:00| 4.0| null|
|1970-01-01T08:00:00.060+08:00| 6.0| 6.0|
+-----------------------------+-----------------------------+-----------------------------+
Total line number = 5
It costs 0.011s
Input4:
select (a + b) * 3 from root.sg, root.ln
Result4:
+-----------------------------+---------------------------+---------------------------+---------------------------+---------------------------+
| Time|(root.sg.a + root.sg.b) * 3|(root.sg.a + root.ln.b) * 3|(root.ln.a + root.sg.b) * 3|(root.ln.a + root.ln.b) * 3|
+-----------------------------+---------------------------+---------------------------+---------------------------+---------------------------+
|1970-01-01T08:00:00.010+08:00| 90.0| 270.0| 360.0| 540.0|
|1970-01-01T08:00:00.020+08:00| 150.0| 330.0| 690.0| 870.0|
|1970-01-01T08:00:00.030+08:00| 210.0| 450.0| 570.0| 810.0|
|1970-01-01T08:00:00.040+08:00| 270.0| 240.0| 690.0| 660.0|
|1970-01-01T08:00:00.050+08:00| 330.0| null| null| null|
|1970-01-01T08:00:00.060+08:00| 390.0| null| null| null|
|1970-01-01T08:00:00.070+08:00| 450.0| null| null| null|
|1970-01-01T08:00:00.090+08:00| 60.0| null| null| null|
|1970-01-01T08:00:00.100+08:00| 60.0| null| null| null|
+-----------------------------+---------------------------+---------------------------+---------------------------+---------------------------+
Total line number = 9
It costs 0.014s
Explanation
- Only when the left operand and the right operand under a certain timestamp are not
null
, the nested expressions will have an output value. Otherwise this row will not be included in the result.- In Result1 of the Example part, the value of time series
root.sg.a
at time 40 is 4, while the value of time seriesroot.sg.b
isnull
. So at time 40, the value of nested expressions(a + b) * 2 + sin(a)
isnull
. So in Result2, this row is not included in the result.
- In Result1 of the Example part, the value of time series
- If one operand in the nested expressions can be translated into multiple time series (For example,
*
), the result of each time series will be included in the result (Cartesian product). Please refer to Input3, Input4 and corresponding Result3 and Result4 in Example.
Note
IoTDB supports the calculation of arbitrary nested expressions consisting of numbers, aggregations and arithmetic expressions in the select
clause.
Example
Aggregation query without GROUP BY
.
Input1:
select avg(temperature),
sin(avg(temperature)),
avg(temperature) + 1,
-sum(hardware),
avg(temperature) + sum(hardware)
from root.ln.wf01.wt01;
Result1:
+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+--------------------------------------------------------------------+
|avg(root.ln.wf01.wt01.temperature)|sin(avg(root.ln.wf01.wt01.temperature))|avg(root.ln.wf01.wt01.temperature) + 1|-sum(root.ln.wf01.wt01.hardware)|avg(root.ln.wf01.wt01.temperature) + sum(root.ln.wf01.wt01.hardware)|
+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+--------------------------------------------------------------------+
| 15.927999999999999| -0.21826546964855045| 16.927999999999997| -7426.0| 7441.928|
+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+--------------------------------------------------------------------+
Total line number = 1
It costs 0.009s
Input2:
select avg(*),
(avg(*) + 1) * 3 / 2 -1
from root.sg1
Result2:
+---------------+---------------+-------------------------------------+-------------------------------------+
|avg(root.sg1.a)|avg(root.sg1.b)|(((avg(root.sg1.a) + 1) * 3) / 2) - 1|(((avg(root.sg1.b) + 1) * 3) / 2) - 1|
+---------------+---------------+-------------------------------------+-------------------------------------+
| 3.2| 3.4| 5.300000000000001| 5.6000000000000005|
+---------------+---------------+-------------------------------------+-------------------------------------+
Total line number = 1
It costs 0.007s
Aggregation with GROUP BY
.
Input3:
select avg(temperature),
sin(avg(temperature)),
avg(temperature) + 1,
-sum(hardware),
avg(temperature) + sum(hardware) as custom_sum
from root.ln.wf01.wt01
GROUP BY([10, 90), 10ms);
Result3:
+-----------------------------+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+----------+
| Time|avg(root.ln.wf01.wt01.temperature)|sin(avg(root.ln.wf01.wt01.temperature))|avg(root.ln.wf01.wt01.temperature) + 1|-sum(root.ln.wf01.wt01.hardware)|custom_sum|
+-----------------------------+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+----------+
|1970-01-01T08:00:00.010+08:00| 13.987499999999999| 0.9888207947857667| 14.987499999999999| -3211.0| 3224.9875|
|1970-01-01T08:00:00.020+08:00| 29.6| -0.9701057337071853| 30.6| -3720.0| 3749.6|
|1970-01-01T08:00:00.030+08:00| null| null| null| null| null|
|1970-01-01T08:00:00.040+08:00| null| null| null| null| null|
|1970-01-01T08:00:00.050+08:00| null| null| null| null| null|
|1970-01-01T08:00:00.060+08:00| null| null| null| null| null|
|1970-01-01T08:00:00.070+08:00| null| null| null| null| null|
|1970-01-01T08:00:00.080+08:00| null| null| null| null| null|
+-----------------------------+----------------------------------+---------------------------------------+--------------------------------------+--------------------------------+----------+
Total line number = 8
It costs 0.012s
Explanation
- Only when the left operand and the right operand under a certain timestamp are not
null
, the nested expressions will have an output value. Otherwise this row will not be included in the result. But for nested expressions withGROUP BY
clause, it is better to show the result of all time intervals. Please refer to Input3 and corresponding Result3 in Example.
Note
Since the unique data model of IoTDB, lots of additional information like device will be carried before each sensor. Sometimes, we want to query just one specific device, then these prefix information show frequently will be redundant in this situation, influencing the analysis of result set. At this time, we can use AS
function provided by IoTDB, assign an alias to time series selected in query.
select s1 as temperature, s2 as speed from root.ln.wf01.wt01;
The result set is:
Time | temperature | speed |
---|---|---|
… | … | … |