Continuous Query, CQ
Note that the current distributed version of IoTDB does not support continuous queries. Please stay tuned.
Syntax
<cq_id>
specifies the globally unique id of CQ.<every_interval>
specifies the query execution time interval. We currently support the units of ns, us, ms, s, m, h, d, w, and its value should not be lower than the minimum threshold configured by the user.<for_interval>
specifies the time range of each query as[now()-<for_interval>, now())
. We currently support the units of ns, us, ms, s, m, h, d, w.<execution_boundary_time>
is a date that represents the start time of the first window.<execution_boundary_time>
can be earlier than, equals to, later than current time.- This parameter is optional. If not specified, it is equivalent to
BOUNDARY now()
. - The end time of the first window is
<execution_boundary_time> + <for_interval>
. - The start time of the
i (1 <= i)
th window is<execution_boundary_time> + <for_interval> + (i - 1) * <every_interval>
. - The end time of the
i (1 <= i)
th window is<execution_boundary_time> + <for_interval> + i * <every_interval>
. - If current time is earlier than or equal to the end time of the first window, then the first execution moment of the continuous query is the end time of the first window.
- If current time is later than the end time of the first window, then the first execution moment of the continuous query is the end time of the first window whose end time is later than or equal to the current time .
- The query time range at each execution moment is
[now() - <for_interval>, now())
.
<function>
specifies the aggregate function.<full_path>
or<node_name>
specifies the result time series path.<group_by_interval>
specifies the time grouping length. We currently support the units of ns, us, ms, s, m, h, d, w, mo, y.<level>
refers to grouping according to the<level>
level of the time series, and grouping the aggregation result of time series with the same name below the<level>
level. For the specific semantics of the Group By Level statement and the definition of<level>
, see
Note:
<for_interval>
,<every_interval>
can optionally be specified. If the user does not specify one of them, the value of the unspecified item will be processed equal to<group_by_interval>
.- The values of
<every_interval>
,<for_interval>
and<group_by_interval>
should all be greater than 0. - The value of
<group_by_interval>
should be less than the value of<for_interval>
, otherwise the system will process the value equal to<for_interval>
. - The user should specify the appropriate
<for_interval>
and<every_interval>
according to actual needs.- If
<for_interval>
is greater than<every_interval>
, there will be partial data overlap in each query window. This configuration is not recommended from the perspective of query performance. - If
<for_interval>
is less than<every_interval>
, there may be uncovered data between each query window.
- If
- The values of
- For the result series path
- The user can choose to specify
<full_path>
, which is the complete time series path starting withroot
. The user can use the${x}
variable in the path to represent the node name oflevel = x
in the original time series.x
should be greater than or equal to 0 and less than or equal to the value of<level>
(Iflevel
is not specified, it should be less than or equal to the level, i.e. length, of<path_prefix>
). - The user can also specify only
<node_name>
, which is the last node name of the result time series path.- If the user specifies
<level> = l
, the result time series path generated by the system isroot.${1}. ... .${l}.<node_name>
- If the user does not specify
<level>
, let the maximum level of the original time series beL
, Then the result time series path generated by the system isroot.${1}. ... .${L-1}.<node_name>
.
- If the user specifies
- The user can choose to specify
Examples
Original Data
| timeseries|alias|storage group|dataType|encoding|compression|tags|attributes|
+-----------------------------+-----+-------------+--------+--------+-----------+----+----------+
|root.ln.wf02.wt02.temperature| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf02.wt01.temperature| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf01.wt02.temperature| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf01.wt01.temperature| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
+-----------------------------+-----+-------------+--------+--------+-----------+----+----------+
+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+
| Time|root.ln.wf02.wt02.temperature|root.ln.wf02.wt01.temperature|root.ln.wf01.wt02.temperature|root.ln.wf01.wt01.temperature|
|2021-05-11T22:18:14.598+08:00| 121.0| 72.0| 183.0| 115.0|
|2021-05-11T22:18:19.941+08:00| 0.0| 68.0| 68.0| 103.0|
|2021-05-11T22:18:24.949+08:00| 122.0| 45.0| 11.0| 14.0|
|2021-05-11T22:18:29.967+08:00| 47.0| 14.0| 59.0| 181.0|
|2021-05-11T22:18:34.979+08:00| 182.0| 113.0| 29.0| 180.0|
|2021-05-11T22:18:39.990+08:00| 42.0| 11.0| 52.0| 19.0|
|2021-05-11T22:18:44.995+08:00| 78.0| 38.0| 123.0| 52.0|
|2021-05-11T22:18:49.999+08:00| 137.0| 172.0| 135.0| 193.0|
|2021-05-11T22:18:55.003+08:00| 16.0| 124.0| 183.0| 18.0|
+-----------------------------+-----------------------------+-----------------------------+-----------------------------+-----------------------------+
Result time series path configuration example
For the above original time series, if the user specifies that the query aggregation level is 2
, the aggregation function is avg
, The user can specify only the last node name of the generated time series in the INTO
clause. If the user specifies it as temperature_avg
, the full path generated by the system will be root.${1}.${2}.temperature_avg
. The user can also specify the full path in the INTO
clause, and the user can specify it as root.${1}.${2}.temperature_avg
, root.ln_cq.${2}.temperature_avg
, root.${1}_cq.${2}.temperature_avg
, root.${1}.${2}_cq.temperature_avg
etc., It can also be specified as root.${2}.${1}.temperature_avg
and others as needed. It should be noted that the x
in ${x}
should be greater than or equal to 1
and less than or equal to the value of <level>
(If <level>
is not specified, it should be less than or equal to the length of <path_prefix>
). In the above example, x
should be less than or equal to 2
.
Create cq1
CREATE CONTINUOUS QUERY cq1
BEGIN
SELECT max_value(temperature)
INTO temperature_max
FROM root.ln.*.*
GROUP BY time(10s)
END
Query the maximum value of root.ln.*.*.temperature
in the previous 10s every 10s (the results are grouped by 10s), and the results will be written to root.${1}.${2}.${3}.temperature_max
, As a result, 4 new time series will be generated.
+---------------------------------+-----+-------------+--------+--------+-----------+----+----------+
| timeseries|alias|storage group|dataType|encoding|compression|tags|attributes|
+---------------------------------+-----+-------------+--------+--------+-----------+----+----------+
|root.ln.wf02.wt02.temperature_max| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf02.wt01.temperature_max| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf01.wt02.temperature_max| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
|root.ln.wf01.wt01.temperature_max| null| root.ln| FLOAT| GORILLA| SNAPPY|null| null|
+---------------------------------+-----+-------------+--------+--------+-----------+----+----------+
+-----------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
| Time|root.ln.wf02.wt02.temperature_max|root.ln.wf02.wt01.temperature_max|root.ln.wf01.wt02.temperature_max|root.ln.wf01.wt01.temperature_max|
+-----------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
|2021-05-11T22:18:16.964+08:00| 122.0| 68.0| 68.0| 103.0|
|2021-05-11T22:18:26.964+08:00| 182.0| 113.0| 59.0| 181.0|
|2021-05-11T22:18:36.964+08:00| 78.0| 38.0| 123.0| 52.0|
|2021-05-11T22:18:46.964+08:00| 137.0| 172.0| 183.0| 193.0|
+-----------------------------+---------------------------------+---------------------------------+---------------------------------+---------------------------------+
Create cq2
+----------------------------+-----+-------------+--------+--------+-----------+----+----------+
|root.ln.wf02.temperature_avg| null| root.ln| DOUBLE| GORILLA| SNAPPY|null| null|
|root.ln.wf01.temperature_avg| null| root.ln| DOUBLE| GORILLA| SNAPPY|null| null|
+----------------------------+-----+-------------+--------+--------+-----------+----+----------+
+-----------------------------+----------------------------+----------------------------+
| Time|root.ln.wf02.temperature_avg|root.ln.wf01.temperature_avg|
+-----------------------------+----------------------------+----------------------------+
|2021-05-11T22:18:16.969+08:00| 58.75| 49.0|
|2021-05-11T22:18:26.969+08:00| 89.0| 112.25|
|2021-05-11T22:18:36.969+08:00| 42.25| 61.5|
|2021-05-11T22:18:46.969+08:00| 112.25| 132.25|
+-----------------------------+----------------------------+----------------------------+
Create cq3
CREATE CONTINUOUS QUERY cq3
RESAMPLE EVERY 20s FOR 20s
BEGIN
SELECT avg(temperature)
INTO root.ln_cq.${2}.temperature_avg
FROM root.ln.*.*
GROUP BY time(10s), level=2
END
The query mode is the same as cq2
, and the results will be written to root.ln_cq.${2}.temperature_avg
. As a result, 2 new time series will be generated. Among them, root.ln_cq.wf02.temperature_avg
is generated by the aggregation calculation of root.ln.wf02.wt02.temperature
and root.ln.wf02.wt01.temperature
, and root.ln_cq.wf01.temperature_avg
is generated by the aggregation calculation of root.ln.wf01.wt02.temperature
and root.ln.wf01.wt01.temperature
.
+-------------------------------+-----+-------------+--------+--------+-----------+----+----------+
| timeseries|alias|storage group|dataType|encoding|compression|tags|attributes|
+-------------------------------+-----+-------------+--------+--------+-----------+----+----------+
|root.ln_cq.wf02.temperature_avg| null| root.ln_cq| DOUBLE| GORILLA| SNAPPY|null| null|
|root.ln_cq.wf01.temperature_avg| null| root.ln_cq| DOUBLE| GORILLA| SNAPPY|null| null|
+-------------------------------+-----+-------------+--------+--------+-----------+----+----------+
+-----------------------------+-------------------------------+-------------------------------+
| Time|root.ln_cq.wf02.temperature_avg|root.ln_cq.wf01.temperature_avg|
+-----------------------------+-------------------------------+-------------------------------+
|2021-05-11T22:18:16.971+08:00| 58.75| 49.0|
|2021-05-11T22:18:26.971+08:00| 89.0| 112.25|
|2021-05-11T22:18:36.971+08:00| 42.25| 61.5|
|2021-05-11T22:18:46.971+08:00| 112.25| 132.25|
+-----------------------------+-------------------------------+-------------------------------+
创建 cq4
This example is almost identical to creating cq3. The difference is that in this example the user specified BOUNDARY 2022-01-14T23:00:00.000+08:00
.
Note that the first execution time of this CQ is later than the time in the example, so 2022-01-14T23:00:20.000+08:00
is the first execution time. Recursively, 2022-01-14T23:00:40.000+08:00
is the second execution moment, 2022-01-14T23:01:00.000+08:00
is the third execution moment…
The SQL statement executed at the first execution moment is select avg(temperature) from root.ln.*.* group by ([2022-01-14T23:00:00.000+08:00, 2022-01-14T23:00: 20.000+08:00), 10s), level = 2
.
The SQL statement executed at the second execution moment is select avg(temperature) from root.ln.*.* group by ([2022-01-14T23:00:20.000+08:00, 2022-01-14T23:00: 40.000+08:00), 10s), level = 2
.
The SQL statement executed at the third execution moment is select avg(temperature) from root.ln.*.* group by ([2022-01-14T23:00:40.000+08:00, 2022-01-14T23:01: 00.000+08:00), 10s), level = 2
.
Syntax
SHOW (CONTINUOUS QUERIES | CQS)
Example Result
+-------+--------------+------------+-------------+----------------------------------------------------------------------------------------+-----------------------------------+
|cq name|every interval|for interval| boundary| query sql| target path|
+-------+--------------+------------+-------------+----------------------------------------------------------------------------------------+-----------------------------------+
| cq1| 10000| 10000|1642166102238| select max_value(temperature) from root.ln.*.* group by ([now() - 10s, now()), 10s)|root.${1}.${2}.${3}.temperature_max|
| cq3| 20000| 20000|1642166118339|select avg(temperature) from root.ln.*.* group by ([now() - 20s, now()), 10s), level = 2| root.ln_cq.${2}.temperature_avg|
| cq2| 20000| 20000|1642166111493|select avg(temperature) from root.ln.*.* group by ([now() - 20s, now()), 10s), level = 2| root.${1}.${2}.temperature_avg|
| cq4| 20000| 20000|1642172400000|select avg(temperature) from root.ln.*.* group by ([now() - 20s, now()), 10s), level = 2| root.ln_cq.${2}.temperature_avg|
+-------+--------------+------------+-------------+----------------------------------------------------------------------------------------+-----------------------------------+
Syntax
DROP (CONTINUOUS QUERY | CQ) <cq_id>
Example
DROP CONTINUOUS QUERY cq3
DROP CQ cq3