However, sometimes we want our library user to be able to extend the set of types that are valid in a particular situation. To show how we might achieve this, we’ll create an example graphical user interface (GUI) tool that iterates through a list of items, calling a draw
method on each one to draw it to the screen—a common technique for GUI tools. We’ll create a library crate called gui
that contains the structure of a GUI library. This crate might include some types for people to use, such as Button
or TextField
. In addition, gui
users will want to create their own types that can be drawn: for instance, one programmer might add an Image
and another might add a SelectBox
.
We won’t implement a fully fledged GUI library for this example but will show how the pieces would fit together. At the time of writing the library, we can’t know and define all the types other programmers might want to create. But we do know that gui
needs to keep track of many values of different types, and it needs to call a draw
method on each of these differently typed values. It doesn’t need to know exactly what will happen when we call the draw
method, just that the value will have that method available for us to call.
To do this in a language with inheritance, we might define a class named Component
that has a method named draw
on it. The other classes, such as Button
, Image
, and SelectBox
, would inherit from Component
and thus inherit the draw
method. They could each override the draw
method to define their custom behavior, but the framework could treat all of the types as if they were Component
instances and call draw
on them. But because Rust doesn’t have inheritance, we need another way to structure the gui
library to allow users to extend it with new types.
To implement the behavior we want gui
to have, we’ll define a trait named Draw
that will have one method named draw
. Then we can define a vector that takes a trait object. A trait object points to both an instance of a type implementing our specified trait and a table used to look up trait methods on that type at runtime. We create a trait object by specifying some sort of pointer, such as a &
reference or a Box
smart pointer, then the dyn
keyword, and then specifying the relevant trait. (We’ll talk about the reason trait objects must use a pointer in Chapter 19 in the section ) We can use trait objects in place of a generic or concrete type. Wherever we use a trait object, Rust’s type system will ensure at compile time that any value used in that context will implement the trait object’s trait. Consequently, we don’t need to know all the possible types at compile time.
We’ve mentioned that, in Rust, we refrain from calling structs and enums “objects” to distinguish them from other languages’ objects. In a struct or enum, the data in the struct fields and the behavior in impl
blocks are separated, whereas in other languages, the data and behavior combined into one concept is often labeled an object. However, trait objects are more like objects in other languages in the sense that they combine data and behavior. But trait objects differ from traditional objects in that we can’t add data to a trait object. Trait objects aren’t as generally useful as objects in other languages: their specific purpose is to allow abstraction across common behavior.
Listing 17-3 shows how to define a trait named Draw
with one method named draw
:
Filename: src/lib.rs
Listing 17-3: Definition of the Draw
trait
This syntax should look familiar from our discussions on how to define traits in Chapter 10. Next comes some new syntax: Listing 17-4 defines a struct named Screen
that holds a vector named components
. This vector is of type Box
, which is a trait object; it’s a stand-in for any type inside a Box
that implements the Draw
trait.
Filename: src/lib.rs
pub trait Draw {
fn draw(&self);
}
pub struct Screen {
pub components: Vec<Box<dyn Draw>>,
}
Listing 17-4: Definition of the Screen
struct with a components
field holding a vector of trait objects that implement the Draw
trait
On the Screen
struct, we’ll define a method named run
that will call the draw
method on each of its components
, as shown in Listing 17-5:
pub trait Draw {
fn draw(&self);
}
pub struct Screen {
pub components: Vec<Box<dyn Draw>>,
}
impl Screen {
pub fn run(&self) {
for component in self.components.iter() {
component.draw();
}
}
}
Listing 17-5: A run
method on Screen
that calls the method on each component
This works differently from defining a struct that uses a generic type parameter with trait bounds. A generic type parameter can only be substituted with one concrete type at a time, whereas trait objects allow for multiple concrete types to fill in for the trait object at runtime. For example, we could have defined the Screen
struct using a generic type and a trait bound as in Listing 17-6:
Filename: src/lib.rs
Listing 17-6: An alternate implementation of the Screen
struct and its run
method using generics and trait bounds
This restricts us to a Screen
instance that has a list of components all of type Button
or all of type TextField
. If you’ll only ever have homogeneous collections, using generics and trait bounds is preferable because the definitions will be monomorphized at compile time to use the concrete types.
On the other hand, with the method using trait objects, one Screen
instance can hold a Vec
that contains a Box
as well as a Box
. Let’s look at how this works, and then we’ll talk about the runtime performance implications.
Now we’ll add some types that implement the Draw
trait. We’ll provide the Button
type. Again, actually implementing a GUI library is beyond the scope of this book, so the draw
method won’t have any useful implementation in its body. To imagine what the implementation might look like, a Button
struct might have fields for width
, height
, and label
, as shown in Listing 17-7:
Filename: src/lib.rs
pub trait Draw {
fn draw(&self);
}
pub components: Vec<Box<dyn Draw>>,
}
impl Screen {
pub fn run(&self) {
for component in self.components.iter() {
component.draw();
}
}
}
pub struct Button {
pub width: u32,
pub height: u32,
pub label: String,
}
impl Draw for Button {
fn draw(&self) {
// code to actually draw a button
}
}
Listing 17-7: A Button
struct that implements the Draw
trait
The width
, height
, and label
fields on Button
will differ from the fields on other components; for example, a TextField
type might have those same fields plus a placeholder
field. Each of the types we want to draw on the screen will implement the Draw
trait but will use different code in the draw
method to define how to draw that particular type, as Button
has here (without the actual GUI code, as mentioned). The Button
type, for instance, might have an additional impl
block containing methods related to what happens when a user clicks the button. These kinds of methods won’t apply to types like TextField
.
If someone using our library decides to implement a SelectBox
struct that has width
, height
, and options
fields, they implement the Draw
trait on the SelectBox
type as well, as shown in Listing 17-8:
Filename: src/main.rs
use gui::Draw;
struct SelectBox {
width: u32,
options: Vec<String>,
}
impl Draw for SelectBox {
fn draw(&self) {
// code to actually draw a select box
}
}
fn main() {}
Our library’s user can now write their main
function to create a Screen
instance. To the Screen
instance, they can add a SelectBox
and a Button
by putting each in a Box
to become a trait object. They can then call the run
method on the Screen
instance, which will call draw
on each of the components. Listing 17-9 shows this implementation:
Filename: src/main.rs
Listing 17-9: Using trait objects to store values of different types that implement the same trait
When we wrote the library, we didn’t know that someone might add the SelectBox
type, but our Screen
implementation was able to operate on the new type and draw it because SelectBox
implements the Draw
trait, which means it implements the draw
method.
This concept—of being concerned only with the messages a value responds to rather than the value’s concrete type—is similar to the concept of duck typing in dynamically typed languages: if it walks like a duck and quacks like a duck, then it must be a duck! In the implementation of run
on Screen
in Listing 17-5, run
doesn’t need to know what the concrete type of each component is. It doesn’t check whether a component is an instance of a Button
or a SelectBox
, it just calls the draw
method on the component. By specifying Box
as the type of the values in the components
vector, we’ve defined Screen
to need values that we can call the draw
method on.
The advantage of using trait objects and Rust’s type system to write code similar to code using duck typing is that we never have to check whether a value implements a particular method at runtime or worry about getting errors if a value doesn’t implement a method but we call it anyway. Rust won’t compile our code if the values don’t implement the traits that the trait objects need.
For example, Listing 17-10 shows what happens if we try to create a Screen
with a String
as a component:
Filename: src/main.rs
use gui::Screen;
fn main() {
let screen = Screen {
components: vec![Box::new(String::from("Hi"))],
};
screen.run();
}
Listing 17-10: Attempting to use a type that doesn’t implement the trait object’s trait
We’ll get this error because String
doesn’t implement the Draw
trait:
$ cargo run
Compiling gui v0.1.0 (file:///projects/gui)
error[E0277]: the trait bound `String: Draw` is not satisfied
--> src/main.rs:5:26
|
5 | components: vec![Box::new(String::from("Hi"))],
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Draw` is not implemented for `String`
|
= help: the trait `Draw` is implemented for `Button`
= note: required for the cast to the object type `dyn Draw`
For more information about this error, try `rustc --explain E0277`.
error: could not compile `gui` due to previous error
This error lets us know that either we’re passing something to Screen
we didn’t mean to pass and so should pass a different type or we should implement Draw
on String
so that Screen
is able to call draw
on it.
Recall in the “Performance of Code Using Generics” section in Chapter 10 our discussion on the monomorphization process performed by the compiler when we use trait bounds on generics: the compiler generates nongeneric implementations of functions and methods for each concrete type that we use in place of a generic type parameter. The code that results from monomorphization is doing static dispatch, which is when the compiler knows what method you’re calling at compile time. This is opposed to dynamic dispatch, which is when the compiler can’t tell at compile time which method you’re calling. In dynamic dispatch cases, the compiler emits code that at runtime will figure out which method to call.