You can test out this function at the REPL.
SPAM> (result-type '(:FILE #p"foo" :type ham :classification ham :score 0))
CORRECT
SPAM> (result-type '(:FILE #p"foo" :type spam :classification spam :score 0))
CORRECT
FALSE-POSITIVE
SPAM> (result-type '(:FILE #p"foo" :type spam :classification ham :score 0))
FALSE-NEGATIVE
SPAM> (result-type '(:FILE #p"foo" :type ham :classification unsure :score 0))
SPAM> (result-type '(:FILE #p"foo" :type spam :classification unsure :score 0))
MISSED-SPAM
With those functions, you can easily use the list and sequence manipulation functions I discussed in Chapter 11 to extract and count particular kinds of results.
SPAM> (count-if #'false-positive-p *results*)
6
SPAM> (remove-if-not #'false-positive-p *results*)
((:FILE #p"ham/5349" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999983107355541d0)
(:FILE #p"ham/2746" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.6286468956619795d0)
(:FILE #p"ham/7785" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9542788587998488d0)
(:FILE #p"ham/10581" :TYPE HAM :CLASSIFICATION SPAM :SCORE 0.9999924537959615d0))
This function will give output like this when passed a list of results generated by test-classifier
:
SPAM> (analyze-results *results*)
Total: 3761 : 100.00%
Correct: 3689 : 98.09%
False-positive: 4 : 0.11%
False-negative: 9 : 0.24%
Missed-ham: 19 : 0.51%
Missed-spam: 40 : 1.06%