子查询调优

    openGauss根据子查询在SQL语句中的位置把子查询分成了子查询、子链接两种形式。

    • 子查询SubQuery:对应于查询解析树中的范围表RangeTblEntry,更通俗一些指的是出现在FROM语句后面的独立的SELECT语句。

    • 子链接SubLink:对应于查询解析树中的表达式,更通俗一些指的是出现在where/on子句、targetlist里面的语句。

      综上,对于查询解析树而言,SubQuery的本质是范围表、而SubLink的本质是表达式。针对SubLink场景而言,由于SubLink可以出现在约束条件、表达式中,按照openGauss对sublink的实现,sublink可以分为以下几类:

      • exist_sublink:对应EXIST、NOT EXIST语句
      • any_sublink:对应op ALL(select…)语句,其中OP可以是IN,<,>,=操作符
      • all_sublink:对应op ALL(select…)语句,其中OP可以是IN,<,>,=操作符
      • rowcompare_sublink:对应record op (select …)语句
      • expr_sublink:对应(SELECT with single targetlist item …)语句
      • array_sublink:对应ARRAY(select…)语句
      • cte_sublink:对应with query(…)语句

      其中OLAP、HTAP场景中常用的sublink为exist_sublink、any_sublink,在openGauss的优化引擎中对其应用场景做了优化(子链接提升),由于SQL语句中子查询的使用的灵活性,会带来SQL子查询过于复杂造成性能问题。子查询从大类上来看,分为非相关子查询和相关子查询:

      • 非相关子查询None-Correlated SubQuery

        子查询的执行不依赖于外层父查询的任何属性值。这样子查询具有独立性,可独自求解,形成一个子查询计划先于外层的查询求解。

        例如:

      • 相关子查询Correlated-SubQuery

        子查询的执行依赖于外层父查询的一些属性值(如下列示例t2.c1 = t1.c1条件中的t1.c1)作为内层查询的一个AND-ed条件。这样的子查询不具备独立性,需要和外层查询按分组进行求解。

        例如:

        1. from t1
        2. where t1.c1 in (
        3. select c2
        4. from t2
        5. where t2.c1 = t1.c1 AND t2.c2 in (2,3,4)
        6. );
        7. QUERY PLAN
        8. ------------------------------------------------------------------------
        9. Seq Scan on t1
        10. Filter: (SubPlan 1)
        11. SubPlan 1
        12. -> Seq Scan on t2
        13. Filter: ((c1 = t1.c1) AND (c2 = ANY ('{2,3,4}'::integer[])))
        14. (5 rows)

    针对SubLink的优化策略主要是让内层的子查询提升(pullup),能够和外表直接做关联查询,从而避免生成SubPlan+Broadcast內表的执行计划。判断子查询是否存在性能风险,可以通过explain查询语句查看Sublink的部分是否被转换成SubPlan的执行计划。

    例如:

    箭头右侧执行计划应替换成下面的执行计划:

    1. QUERY PLAN
    2. --------------------------------
    3. Seq Scan on t1
    4. Filter: (SubPlan 1)
    5. SubPlan 1
    6. -> Seq Scan on t2
    7. Filter: (c1 = t1.c1)
    8. (5 rows)
    • 目前openGauss支持的Sublink-Release场景

      • IN-Sublink无相关条件

        • 不能包含上一层查询的表中的列(可以包含更高层查询表中的列)。
        • 不能包含易变函数。

        子查询调优 - 图2

        箭头右侧执行计划应替换成下面的执行计划:

        1. QUERY PLAN
        2. --------------------------------------
        3. Hash Join
        4. Hash Cond: (t1.c1 = t2.c2)
        5. -> Seq Scan on t1
        6. -> Hash
        7. -> HashAggregate
        8. Group By Key: t2.c2
        9. -> Seq Scan on t2
        10. Filter: (c1 = 1)
        11. (8 rows)
      • Exist-Sublink包含相关条件

        Where子句中必须包含上一层查询的表中的列,子查询的其它部分不能含有上层查询的表中的列。其它限制如下。

        • 子查询必须有from子句。
        • 子查询不能含有with子句。
        • 子查询不能含有聚集函数。
        • 子查询里不能包含集合操作、排序、limit、windowagg、having操作。
        • 不能包含易变函数。

        箭头右侧执行计划应替换成下面的执行计划:

        1. QUERY PLAN
        2. -----------------------------------
        3. Hash Join
        4. Hash Cond: (t1.c1 = t2.c1)
        5. -> Seq Scan on t1
        6. -> Hash
        7. -> HashAggregate
        8. Group By Key: t2.c1
        9. -> Seq Scan on t2
        10. (7 rows)
      • 子查询的where条件中必须含有来自上一层的列,而且此列必须和子查询本层涉及表中的列做相等判断,且这些条件必须用and连接。其它地方不能包含上层的列。其它限制条件如下。

        • 子查询中where条件包含的表达式(列名)必须是表中的列。

        • 子查询的Select关键字后,必须有且仅有一个输出列,此输出列必须是聚集函数(如max),并且聚集函数的参数(t2.c2)不能是来自外层表(t1)中的列。聚集函数不能是count。

          例如,下列示例可以提升。

          1. select * from t1 where c1 >(
          2. select max(t2.c1) from t2 where t2.c1=t1.c1
          3. );

          下列示例不能提升,因为子查询没有聚集函数。

          1. select * from t1 where c1 >(
          2. select t2.c1 from t2 where t2.c1=t1.c1

          下列示例不能提升,因为子查询有两个输出列。

          1. select * from t1 where (c1,c2) >(
          2. select max(t2.c1),min(t2.c2) from t2 where t2.c1=t1.c1
          3. );
        • 子查询必须是from子句。

        • 子查询中不能有groupby、having、集合操作。

        • 子查询只能是inner join。

          例如:下列示例不能提升。

          1. select * from t1 where c1 >(
          2. select max(t2.c1) from t2 full join t3 on (t2.c2=t3.c2) where t2.c1=t1.c1
          3. );
        • 子查询的targetlist中不能包含返回set的函数。

        • 子查询的where条件中必须含有来自上一层的列,而且此列必须和子查询层涉及表中的列做相等判断,且这些条件必须用and连接。其它地方不能包含上层的上层中的列。例如:下列示例中的最内层子链接可以提升。

          基于上面的示例,再加一个条件,则不能提升,因为最内侧子查询引用了上层中的列。示例如下:

          1. select * from t3 where t3.c1=(
          2. select t1.c1
          3. from t1 where c1 >(
          4. select max(t2.c1) from t2 where t2.c1=t1.c1 and t3.c1>t2.c2
      • 提升OR子句中的SubLink

        当WHERE过滤条件中有OR连接的EXIST相关SubLink,

        例如:

        1. select a, c from t1
        2. where t1.a = (select avg(a) from t3 where t1.b = t3.b) or
        3. exists (select * from t4 where t1.c = t4.c);

        将OR-ed连接的EXIST相关子查询OR字句的提升过程:

        1. 提取where条件中,or子句中的opExpr。为:t1.a = (select avg(a) from t3 where t1.b = t3.b)

        2. 这个op操作中包含subquery,判断是否可以提升,如果可以提升,重写subquery为:select avg(a), t3.b from t3 group by t3.b,生成not null条件t3.b is not null,并将这个opexpr用这个not null条件替换。此时SQL变为:

          1. select a, c
          2. from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg and t1.b = t3.b)
          3. where t3.b is not null or exists (select * from t4 where t1.c = t4.c);
        3. 再次提取or子句中的exists sublink,exists (select * from t4 where t1.c = t4.c),判断是否可以提升,如果可以提升,转换subquery为:select t4.c from t4 group by t4.c生成NotNull条件t4.c is not null提升查询,SQL变为:

          1. select t1.a, t1.c from t1 left join (select avg(a) avg, t3.b from t3 group by t3.b) as t3 on (t1.a = avg and t1.b = t3.b) left join (select t5.c from t5 group by t5.c) as t5 on (t1.c = t5.c) where t3.b is not null or t5.c is not null;
    • 目前openGauss不支持的Sublink-Release场景

      除了以上场景之外都不支持Sublink提升,因此关联子查询会被计划成SubPlan+Broadcast的执行计划,当inner表的数据量较大时则会产生性能风险。

      如果相关子查询中跟外层的两张表做join,那么无法提升该子查询,需要通过将父SQL创建成with子句,然后再跟子查询中的表做相关子查询查询。

      1. select distinct t1.a, t2.a
      2. from t1 left join t2 on t1.a=t2.a and not exists (select a,b from test1 where test1.a=t1.a and test1.b=t2.a);

      改写为

      1. with temp as
      2. (
      3. select * from (select t1.a as a, t2.a as b from t1 left join t2 on t1.a=t2.a)
      4. )
      5. select distinct a,b
      6. from temp
      7. where not exists (select a,b from test1 where temp.a=test1.a and temp.b=test1.b);
      • 出现在targetlist里的相关子查询无法提升(不含count)

        例如:

        1. explain (costs off)
        2. select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
        3. from t1
        4. where t1.c2 > 10;

        执行计划为:

        1. explain (costs off)
        2. select (select c2 from t2 where t1.c1 = t2.c1) ssq, t1.c2
        3. from t1
        4. where t1.c2 > 10;
        5. QUERY PLAN
        6. --------------------------------
        7. Seq Scan on t1
        8. Filter: (c2 > 10)
        9. SubPlan 1
        10. -> Seq Scan on t2
        11. Filter: (t1.c1 = c1)
        12. (5 rows)

        由于相关子查询出现在targetlist(查询返回列表)里,对于t1.c1=t2.c1不匹配的场景仍然需要输出值,因此使用left-outerjoin关联T1&T2确保t1.c1=t2.c1在不匹配时,子SSQ能够返回不匹配的补空值。

        上述SQL语句可以改写为:

        改写后的执行计划为:

        1. QUERY PLAN
        2. ---------------------------------
        3. Hash Right Join
        4. Hash Cond: (ssq.c2 = t1.c1)
        5. CTE ssq
        6. -> Seq Scan on t2
        7. -> CTE Scan on ssq
        8. -> Hash
        9. -> Seq Scan on t1
        10. Filter: (c2 > 10)
        11. (8 rows)

        可以看到出现在SSQ返回列表里的相关子查询SSQ,已经被提升成Right Join,从而避免当內表T2较大时出现SubPlan计划导致性能变差。

      • 出现在targetlist里的相关子查询无法提升(带count)

        例如:

        1. select (select count(*) from t2 where t2.c1=t1.c1) cnt, t1.c1, t3.c1
        2. from t1,t3
        3. where t1.c1=t3.c1 order by cnt, t1.c1;

        执行计划为

        1. QUERY PLAN
        2. --------------------------------------------
        3. Sort
        4. -> Hash Join
        5. Hash Cond: (t1.c1 = t3.c1)
        6. -> Seq Scan on t1
        7. -> Hash
        8. -> Seq Scan on t3
        9. SubPlan 1
        10. -> Aggregate
        11. -> Seq Scan on t2
        12. Filter: (c1 = t1.c1)

        由于相关子查询出现在targetlist(查询返回列表)里,对于t1.c1=t2.c1不匹配的场景仍然需要输出值,因此使用left-outerjoin关联T1&T2确保t1.c1=t2.c1在不匹配时子SSQ能够返回不匹配的补空值,但是这里带了count语句及时在t1.c1=t2.t1不匹配时需要输出0,因此可以使用一个case-when NULL then 0 else count(*)来代替。

        上述SQL语句可以改写为:

        1. with ssq as
        2. (
        3. select count(*) cnt, c1 from t2 group by c1
        4. )
        5. select case when
        6. ssq.cnt is null then 0
        7. else ssq.cnt
        8. end cnt, t1.c1, t3.c1
        9. from t1 left join ssq on ssq.c1 = t1.c1,t3
        10. where t1.c1 = t3.c1
        11. order by ssq.cnt, t1.c1;

        改写后的执行计划为

        1. QUERY PLAN
        2. -------------------------------------------
        3. Sort
        4. Sort Key: ssq.cnt, t1.c1
        5. CTE ssq
        6. -> HashAggregate
        7. Group By Key: t2.c1
        8. -> Seq Scan on t2
        9. -> Hash Join
        10. Hash Cond: (t1.c1 = t3.c1)
        11. -> Hash Left Join
        12. Hash Cond: (t1.c1 = ssq.c1)
        13. -> Seq Scan on t1
        14. -> Hash
        15. -> CTE Scan on ssq
        16. -> Hash
        17. -> Seq Scan on t3
        18. (15 rows)
      • 相关条件为不等值场景

        例如:

        1. select t1.c1, t1.c2
        2. from t1
        3. where t1.c1 = (select agg() from t2.c2 > t1.c2);

        对于非等值相关条件的SubLink目前无法提升,从语义上可以通过做2次join(一次CorrelationKey,一次rownum自关联)达到提升改写的目的。

        改写方案有两种。

        • 子查询改写方式

          1. select t1.c1, t1.c2
          2. from t1, (
          3. select t1.rowid, agg() aggref
          4. from t1,t2
          5. where t1.c2 > t2.c2 group by t1.rowid
          6. ) dt /* derived table */
          7. where t1.rowid = dt.rowid AND t1.c1 = dt.aggref;
        • CTE改写方式

          1. WITH dt as
          2. (
          3. select t1.rowid, agg() aggref
          4. from t1,t2
          5. where t1.c2 > t2.c2 group by t1.rowid
          6. )
          7. select t1.c1, t1.c2
          8. from t1, derived_table
          9. where t1.rowid = derived_table.rowid AND
          10. t1.c1 = derived_table.aggref;

      子查询调优 - 图5 须知:

      • 对于AGG类型为count(*)时需要进行CASE-WHEN对没有match的场景补0处理,非COUNT(*)场景NULL处理。
      • CTE改写方式如果有sharescan支持性能上能够更优。

    **示例:**修改select语句,将子查询修改为和主表的join,或者修改为可以提升的subquery,但是在修改前后需要保证语义的正确性。

    1. explain (costs off) select * from t1 where exists (select t2.c1 from t2 where t1.c1 = t2.c2 and t1.c1 = t2.c1);
    2. QUERY PLAN
    3. ------------------------------------------
    4. Hash Join
    5. Hash Cond: (t1.c1 = t2.c2)
    6. -> Seq Scan on t1
    7. -> Hash
    8. -> HashAggregate
    9. Group By Key: t2.c2, t2.c1
    10. -> Seq Scan on t2
    11. Filter: (c2 = c1)

    从计划可以看出,subPlan消除了,计划变成了两个表的hash join,这样会大大提高执行效率。