Installing a cluster on Azure into a government region

    Azure government regions

    OKD supports deploying a cluster to Microsoft Azure Government (MAG) regions. MAG is specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads on Azure. MAG is composed of government-only data center regions, all granted an .

    Installing to a MAG region requires manually configuring the Azure Government dedicated cloud instance and region in the install-config.yaml file. You must also update your service principal to reference the appropriate government environment.

    Private clusters

    You can deploy a private OKD cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.

    By default, OKD is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.

    If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private.

    To deploy a private cluster, you must:

    • Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.

    • Deploy from a machine that has access to:

      • The API services for the cloud to which you provision.

      • The hosts on the network that you provision.

      • The internet to obtain installation media.

    You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.

    To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.

    Depending how your network connects to the private VNET, you might need to use a DNS forwarder to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16 internally for DNS resolution. For more information, see What is Azure Private DNS? and in the Azure documentation.

    The cluster still requires access to internet to access the Azure APIs.

    The following items are not required or created when you install a private cluster:

    • A BaseDomainResourceGroup, since the cluster does not create public records

    • Public IP addresses

    • Public DNS records

    • Public endpoints

    Limitations

    Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.

    User-defined outbound routing

    In OKD, you can choose your own outbound routing for a cluster to connect to the internet. This allows you to skip the creation of public IP addresses and the public load balancer.

    You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.

    When configuring a cluster to use user-defined routing, the installation program does not create the following resources:

    • Outbound rules for access to the internet.

    • Public IPs for the public load balancer.

    • Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.

    You must ensure the following items are available before setting user-defined routing:

    • Egress to the internet is possible to pull container images, unless using an OpenShift image registry mirror.

    • The cluster can access Azure APIs.

    • Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.

    There are several pre-existing networking setups that are supported for internet access using user-defined routing.

    Private cluster with network address translation

    You can use to provide outbound internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.

    When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.

    Private cluster with Azure Firewall

    You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.

    When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.

    Private cluster with a proxy configuration

    You can use a proxy with user-defined routing to allow egress to the internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.

    When using the default route table for subnets, with 0.0.0.0/0 populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.

    Private cluster with no internet access

    You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:

    • An OpenShift image registry mirror that allows for pulling container images

    • Access to Azure APIs

    With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.

    In OKD 4.13, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.

    By deploying OKD into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.

    Requirements for using your VNet

    When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:

    • Subnets

    • Route tables

    • VNets

    • Network Security Groups

    The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

    If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.

    The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.

    Your VNet must meet the following characteristics:

    • The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.

    • The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.

    You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.

    To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

    • All the specified subnets exist.

    • There are two private subnets, one for the control plane machines and one for the compute machines.

    • The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.

    If you destroy a cluster that uses an existing VNet, the VNet is not deleted.

    Network security group requirements

    The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.

    The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.

    Table 1. Required ports
    PortDescriptionControl planeCompute

    80

    Allows HTTP traffic

    x

    443

    Allows HTTPS traffic

    x

    6443

    Allows communication to the control plane machines

    x

    22623

    Allows internal communication to the machine config server for provisioning machines

    x

    Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

    To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

    Because cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.

    Additional resources

    Division of permissions

    Starting with OKD 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.

    The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.

    Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.

    Generating a key pair for cluster node SSH access

    During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

    After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

    If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

    Do not skip this procedure in production environments, where disaster recovery and debugging is required.

    You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

    On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the /home/core/.ssh/authorized_keys.d/core file. However, the Machine Config Operator manages SSH keys in the /home/core/.ssh/authorized_keys file and configures sshd to ignore the /home/core/.ssh/authorized_keys.d/core file. As a result, newly provisioned OKD nodes are not accessible using SSH until the Machine Config Operator reconciles the machine configs with the authorized_keys file. After you can access the nodes using SSH, you can delete the /home/core/.ssh/authorized_keys.d/core file.

    Procedure

    1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

      1. $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
      1Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

      If you plan to install an OKD cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the x86_64 architecture, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

    2. View the public SSH key:

      1. $ cat <path>/<file_name>.pub

      For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

      1. $ cat ~/.ssh/id_ed25519.pub
    3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

      On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

      1. If the ssh-agent process is not already running for your local user, start it as a background task:

        1. $ eval "$(ssh-agent -s)"

        Example output

        1. Agent pid 31874

        If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

    4. Add your SSH private key to the ssh-agent:

      1. $ ssh-add <path>/<file_name> (1)
      1Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

      Example output

      1. Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

    Next steps

    • When you install OKD, provide the SSH public key to the installation program.

    Obtaining the installation program

    Before you install OKD, download the installation file on the host you are using for installation.

    Prerequisites

    • You have a computer that runs Linux or macOS, with 500 MB of local disk space.

    Procedure

    1. Download installer from https://github.com/openshift/okd/releases

      The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.

      Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.

    2. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

      1. $ tar -xvf openshift-install-linux.tar.gz
    3. Download your installation . This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.

      Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use {"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}} as the pull secret when prompted during the installation.

      If you do not use the :

      • Red Hat Operators are not available.

      • The Telemetry and Insights operators do not send data to Red Hat.

      • Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.

    When installing OKD on Microsoft Azure into a government region, you must manually generate your installation configuration file.

    Prerequisites

    • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.

    • You have obtained the OKD installation program and the pull secret for your cluster.

    Procedure

    1. Create an installation directory to store your required installation assets in:

    2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

      You must name this configuration file install-config.yaml.

    3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

      The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

    Installation configuration parameters

    Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml file to provide more details about the platform.

    After installation, you cannot modify these parameters in the install-config.yaml file.

    Required configuration parameters

    Required installation configuration parameters are described in the following table:

    Table 2. Required parameters
    ParameterDescriptionValues

    apiVersion

    The API version for the install-config.yaml content. The current version is v1. The installation program may also support older API versions.

    String

    baseDomain

    The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the baseDomain and metadata.name parameter values that uses the <metadata.name>.<baseDomain> format.

    A fully-qualified domain or subdomain name, such as example.com.

    metadata

    Kubernetes resource ObjectMeta, from which only the name parameter is consumed.

    Object

    metadata.name

    The name of the cluster. DNS records for the cluster are all subdomains of {{.metadata.name}}.{{.baseDomain}}.

    String of lowercase letters, hyphens (-), and periods (.), such as dev.

    platform

    The configuration for the specific platform upon which to perform the installation: alibabacloud, aws, baremetal, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}. For additional information about platform.<platform> parameters, consult the table for your specific platform that follows.

    Object

    Network configuration parameters

    You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.

    Only IPv4 addresses are supported.

    Globalnet is not supported with Red Hat OpenShift Data Foundation disaster recovery solutions. For regional disaster recovery scenarios, ensure that you use a nonoverlapping range of private IP addresses for the cluster and service networks in each cluster.

    Table 3. Network parameters
    ParameterDescriptionValues

    networking

    The configuration for the cluster network.

    Object

    You cannot modify parameters specified by the networking object after installation.

    networking.networkType

    The Red Hat OpenShift Networking network plugin to install.

    Either OpenShiftSDN or OVNKubernetes. The default value is OVNKubernetes.

    networking.clusterNetwork

    The IP address blocks for pods.

    The default value is 10.128.0.0/14 with a host prefix of /23.

    If you specify multiple IP address blocks, the blocks must not overlap.

    An array of objects. For example:

    1. networking:
    2. clusterNetwork:
    3. hostPrefix: 23

    networking.clusterNetwork.cidr

    Required if you use networking.clusterNetwork. An IP address block.

    An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between 0 and 32.

    networking.clusterNetwork.hostPrefix

    The subnet prefix length to assign to each individual node. For example, if hostPrefix is set to 23 then each node is assigned a /23 subnet out of the given cidr. A hostPrefix value of 23 provides 510 (2^(32 - 23) - 2) pod IP addresses.

    A subnet prefix.

    The default value is 23.

    networking.serviceNetwork

    The IP address block for services. The default value is 172.30.0.0/16.

    The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network.

    An array with an IP address block in CIDR format. For example:

    1. networking:
    2. serviceNetwork:
    3. - 172.30.0.0/16

    networking.machineNetwork

    The IP address blocks for machines.

    If you specify multiple IP address blocks, the blocks must not overlap.

    An array of objects. For example:

    1. networking:
    2. machineNetwork:
    3. - cidr: 10.0.0.0/16

    networking.machineNetwork.cidr

    Required if you use networking.machineNetwork. An IP address block. The default value is 10.0.0.0/16 for all platforms other than libvirt and IBM Power Virtual Server. For libvirt, the default value is 192.168.126.0/24. For IBM Power Virtual Server, the default value is 192.168.0.0/24.

    An IP network block in CIDR notation.

    For example, 10.0.0.0/16.

    Set the networking.machineNetwork to match the CIDR that the preferred NIC resides in.

    Optional configuration parameters

    Optional installation configuration parameters are described in the following table:

    Table 4. Optional parameters
    ParameterDescriptionValues

    additionalTrustBundle

    A PEM-encoded X.509 certificate bundle that is added to the nodes’ trusted certificate store. This trust bundle may also be used when a proxy has been configured.

    String

    capabilities

    Controls the installation of optional core cluster components. You can reduce the footprint of your OKD cluster by disabling optional components. For more information, see the “Cluster capabilities” page in Installing.

    String array

    capabilities.baselineCapabilitySet

    Selects an initial set of optional capabilities to enable. Valid values are None, v4.11, v4.12 and vCurrent. The default value is vCurrent.

    String

    capabilities.additionalEnabledCapabilities

    Extends the set of optional capabilities beyond what you specify in baselineCapabilitySet. You may specify multiple capabilities in this parameter.

    String array

    compute

    The configuration for the machines that comprise the compute nodes.

    Array of MachinePool objects.

    compute.architecture

    Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64 (the default).

    String

    compute.hyperthreading

    Whether to enable or disable simultaneous multithreading, or hyperthreading, on compute machines. By default, simultaneous multithreading is enabled to increase the performance of your machines’ cores.

    If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

    Enabled or Disabled

    compute.name

    Required if you use compute. The name of the machine pool.

    worker

    compute.platform

    Required if you use compute. Use this parameter to specify the cloud provider to host the worker machines. This parameter value must match the controlPlane.platform parameter value.

    alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, ovirt, powervs, vsphere, or {}

    compute.replicas

    The number of compute machines, which are also known as worker machines, to provision.

    A positive integer greater than or equal to 2. The default value is 3.

    featureSet

    Enables the cluster for a feature set. A feature set is a collection of OKD features that are not enabled by default. For more information about enabling a feature set during installation, see “Enabling features using feature gates”.

    String. The name of the feature set to enable, such as TechPreviewNoUpgrade.

    controlPlane

    The configuration for the machines that comprise the control plane.

    Array of MachinePool objects.

    controlPlane.architecture

    Determines the instruction set architecture of the machines in the pool. Currently, clusters with varied architectures are not supported. All pools must specify the same architecture. Valid values are amd64.

    String

    controlPlane.hyperthreading

    Whether to enable or disable simultaneous multithreading, or hyperthreading, on control plane machines. By default, simultaneous multithreading is enabled to increase the performance of your machines’ cores.

    If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance.

    Enabled or Disabled

    controlPlane.name

    Required if you use controlPlane. The name of the machine pool.

    master

    controlPlane.platform

    Required if you use controlPlane. Use this parameter to specify the cloud provider that hosts the control plane machines. This parameter value must match the compute.platform parameter value.

    alibabacloud, aws, azure, gcp, ibmcloud, nutanix, openstack, , powervs, vsphere, or {}

    controlPlane.replicas

    The number of control plane machines to provision.

    The only supported value is 3, which is the default value.

    credentialsMode

    The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.

    Not all CCO modes are supported for all cloud providers. For more information about CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content.

    If your AWS account has service control policies (SCP) enabled, you must configure the credentialsMode parameter to Mint, Passthrough or Manual.

    Mint, Passthrough, Manual or an empty string (“”).

    imageContentSources

    Sources and repositories for the release-image content.

    Array of objects. Includes a source and, optionally, mirrors, as described in the following rows of this table.

    imageContentSources.source

    Required if you use imageContentSources. Specify the repository that users refer to, for example, in image pull specifications.

    String

    imageContentSources.mirrors

    Specify one or more repositories that may also contain the same images.

    Array of strings

    publish

    How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes.

    Internal or External. To deploy a private cluster, which cannot be accessed from the internet, set publish to Internal. The default value is External.

    sshKey

    The SSH key or keys to authenticate access your cluster machines.

    For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

    One or more keys. For example:

    1. sshKey:
    2. <key1>
    3. <key2>
    4. <key3>

    Additional Azure configuration parameters

    Additional Azure configuration parameters are described in the following table:

    Table 5. Additional Azure parameters
    ParameterDescriptionValues

    compute.platform.azure.encryptionAtHost

    Enables host-level encryption for compute machines. You can enable this encryption alongside user-managed server-side encryption. This feature encrypts temporary, ephemeral, cached and un-managed disks on the VM host. This is not a prerequisite for user-managed server-side encryption.

    true or false. The default is false.

    compute.platform.azure.osDisk.diskSizeGB

    The Azure disk size for the VM.

    Integer that represents the size of the disk in GB. The default is 128.

    compute.platform.azure.osDisk.diskType

    Defines the type of disk.

    standard_LRS, premium_LRS, or standardSSD_LRS. The default is premium_LRS.

    compute.platform.azure.ultraSSDCapability

    Enables the use of Azure ultra disks for persistent storage on compute nodes. This requires that your Azure region and zone have ultra disks available.

    Enabled, Disabled. The default is Disabled.

    compute.platform.azure.osDisk.diskEncryptionSet.resourceGroup

    The name of the Azure resource group that contains the disk encryption set from the installation prerequisites. This resource group should be different from the resource group where you install the cluster to avoid deleting your Azure encryption key when the cluster is destroyed. This value is only necessary if you intend to install the cluster with user-managed disk encryption.

    String, for example production_encryption_resource_group.

    compute.platform.azure.osDisk.diskEncryptionSet.name

    The name of the disk encryption set that contains the encryption key from the installation prerequisites.

    String, for example production_disk_encryption_set.

    compute.platform.azure.osDisk.diskEncryptionSet.subscriptionId

    Defines the Azure subscription of the disk encryption set where the disk encryption set resides. This secondary disk encryption set is used to encrypt compute machines.

    String, in the format 00000000-0000-0000-0000-000000000000.

    compute.platform.azure.vmNetworkingType

    Enables accelerated networking. Accelerated networking enables single root I/O virtualization (SR-IOV) to a VM, improving its networking performance. If instance type of compute machines support Accelerated networking, by default, the installer enables Accelerated networking, otherwise the default networking type is Basic.

    Accelerated or Basic.

    controlPlane.platform.azure.encryptionAtHost

    Enables host-level encryption for control plane machines. You can enable this encryption alongside user-managed server-side encryption. This feature encrypts temporary, ephemeral, cached and un-managed disks on the VM host. This is not a prerequisite for user-managed server-side encryption.

    true or false. The default is false.

    controlPlane.platform.azure.osDisk.diskEncryptionSet.resourceGroup

    The name of the Azure resource group that contains the disk encryption set from the installation prerequisites. This resource group should be different from the resource group where you install the cluster to avoid deleting your Azure encryption key when the cluster is destroyed. This value is only necessary if you intend to install the cluster with user-managed disk encryption.

    String, for example production_encryption_resource_group.

    controlPlane.platform.azure.osDisk.diskEncryptionSet.name

    The name of the disk encryption set that contains the encryption key from the installation prerequisites.

    String, for example production_disk_encryption_set.

    controlPlane.platform.azure.osDisk.diskEncryptionSet.subscriptionId

    Defines the Azure subscription of the disk encryption set where the disk encryption set resides. This secondary disk encryption set is used to encrypt control plane machines.

    String, in the format 00000000-0000-0000-0000-000000000000.

    controlPlane.platform.azure.osDisk.diskSizeGB

    The Azure disk size for the VM.

    Integer that represents the size of the disk in GB. The default is 1024.

    controlPlane.platform.azure.osDisk.diskType

    Defines the type of disk.

    premium_LRS or standardSSD_LRS. The default is premium_LRS.

    controlPlane.platform.azure.ultraSSDCapability

    Enables the use of Azure ultra disks for persistent storage on control plane machines. This requires that your Azure region and zone have ultra disks available.

    Enabled, Disabled. The default is Disabled.

    controlPlane.platform.azure.vmNetworkingType

    Enables accelerated networking. Accelerated networking enables single root I/O virtualization (SR-IOV) to a VM, improving its networking performance. If instance type of control plane machines support Accelerated networking, by default, the installer enables Accelerated networking, otherwise the default networking type is Basic.

    Accelerated or Basic.

    platform.azure.baseDomainResourceGroupName

    The name of the resource group that contains the DNS zone for your base domain.

    String, for example production_cluster.

    platform.azure.resourceGroupName

    The name of an already existing resource group to install your cluster to. This resource group must be empty and only used for this specific cluster; the cluster components assume ownership of all resources in the resource group. If you limit the service principal scope of the installation program to this resource group, you must ensure all other resources used by the installation program in your environment have the necessary permissions, such as the public DNS zone and virtual network. Destroying the cluster by using the installation program deletes this resource group.

    String, for example existing_resource_group.

    platform.azure.outboundType

    The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing.

    LoadBalancer or UserDefinedRouting. The default is LoadBalancer.

    platform.azure.region

    The name of the Azure region that hosts your cluster.

    Any valid region name, such as centralus.

    platform.azure.zone

    List of availability zones to place machines in. For high availability, specify at least two zones.

    List of zones, for example [“1”, “2”, “3”].

    platform.azure.defaultMachinePlatform.ultraSSDCapability

    Enables the use of Azure ultra disks for persistent storage on control plane and compute machines. This requires that your Azure region and zone have ultra disks available.

    Enabled, Disabled. The default is Disabled.

    platform.azure.networkResourceGroupName

    The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the platform.azure.baseDomainResourceGroupName.

    String.

    platform.azure.virtualNetwork

    The name of the existing VNet that you want to deploy your cluster to.

    String.

    platform.azure.controlPlaneSubnet

    Valid CIDR, for example 10.0.0.0/16.

    platform.azure.computeSubnet

    The name of the existing subnet in your VNet that you want to deploy your compute machines to.

    Valid CIDR, for example 10.0.0.0/16.

    platform.azure.cloudName

    The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value AzurePublicCloud is used.

    Any valid cloud environment, such as AzurePublicCloud or AzureUSGovernmentCloud.

    platform.azure.defaultMachinePlatform.vmNetworkingType

    Enables accelerated networking. Accelerated networking enables single root I/O virtualization (SR-IOV) to a VM, improving its networking performance.

    Accelerated or Basic. If instance type of control plane and compute machines support Accelerated networking, by default, the installer enables Accelerated networking, otherwise the default networking type is Basic.

    You cannot customize or Use tags to organize your Azure resources with an Azure cluster.

    Minimum resource requirements for cluster installation

    Each cluster machine must meet the following minimum requirements:

    1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

    2. OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

    3. As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.

    You are required to use Azure virtual machines with premiumIO set to true. The machines must also have the hyperVGeneration property contain V1.

    If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.

    Tested instance types for Azure

    The following Microsoft Azure instance types have been tested with OKD.

    Machine types

    • standardBSFamily

    • standardDADSv5Family

    • standardDASv4Family

    • standardDASv5Family

    • standardDCSv3Family

    • standardDCSv2Family

    • standardDDCSv3Family

    • standardDDSv4Family

    • standardDDSv5Family

    • standardDLDSv5Family

    • standardDLSv5Family

    • standardDSFamily

    • standardDSv2Family

    • standardDSv2PromoFamily

    • standardDSv3Family

    • standardDSv4Family

    • standardDSv5Family

    • standardEADSv5Family

    • standardEASv4Family

    • standardEASv5Family

    • standardEBDSv5Family

    • standardEBSv5Family

    • standardEDSv4Family

    • standardEDSv5Family

    • standardEIADSv5Family

    • standardEIASv4Family

    • standardEIASv5Family

    • standardEIDSv5Family

    • standardEISv3Family

    • standardEISv5Family

    • standardESv3Family

    • standardESv4Family

    • standardESv5Family

    • standardFXMDVSFamily

    • standardFSFamily

    • standardFSv2Family

    • standardGSFamily

    • standardHBrsv2Family

    • standardHBSFamily

    • standardHCSFamily

    • standardLASv3Family

    • standardLSFamily

    • standardLSv2Family

    • standardLSv3Family

    • standardMDSMediumMemoryv2Family

    • standardMIDSMediumMemoryv2Family

    • standardMISMediumMemoryv2Family

    • standardMSFamily

    • standardMSMediumMemoryv2Family

    • StandardNCADSA100v4Family

    • Standard NCASv3_T4 Family

    • standardNCSv2Family

    • standardNCSv3Family

    • standardNDSv2Family

    • standardNPSFamily

    • StandardNVADSA10v5Family

    • standardNVSv3Family

    • standardXEISv4Family

    You can customize the install-config.yaml file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.

    This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

    1. apiVersion: v1
    2. baseDomain: example.com (1)
    3. hyperthreading: Enabled (3) (4)
    4. name: master
    5. platform:
    6. azure:
    7. encryptionAtHost: true
    8. ultraSSDCapability: Enabled
    9. osDisk:
    10. diskSizeGB: 1024 (5)
    11. diskType: Premium_LRS
    12. diskEncryptionSet:
    13. resourceGroup: disk_encryption_set_resource_group
    14. name: disk_encryption_set_name
    15. subscriptionId: secondary_subscription_id
    16. type: Standard_D8s_v3
    17. replicas: 3
    18. compute: (2)
    19. - hyperthreading: Enabled (3)
    20. name: worker
    21. platform:
    22. azure:
    23. type: Standard_D2s_v3
    24. encryptionAtHost: true
    25. osDisk:
    26. diskSizeGB: 512 (5)
    27. diskType: Standard_LRS
    28. diskEncryptionSet:
    29. resourceGroup: disk_encryption_set_resource_group
    30. name: disk_encryption_set_name
    31. subscriptionId: secondary_subscription_id
    32. zones: (6)
    33. - "1"
    34. - "2"
    35. - "3"
    36. replicas: 5
    37. metadata:
    38. name: test-cluster (1)
    39. networking:
    40. clusterNetwork:
    41. - cidr: 10.128.0.0/14
    42. hostPrefix: 23
    43. machineNetwork:
    44. - cidr: 10.0.0.0/16
    45. networkType: OVNKubernetes (7)
    46. serviceNetwork:
    47. - 172.30.0.0/16
    48. platform:
    49. azure:
    50. defaultMachinePlatform:
    51. ultraSSDCapability: Enabled
    52. baseDomainResourceGroupName: resource_group (8)
    53. region: usgovvirginia
    54. resourceGroupName: existing_resource_group (9)
    55. networkResourceGroupName: vnet_resource_group (10)
    56. virtualNetwork: vnet (11)
    57. controlPlaneSubnet: control_plane_subnet (12)
    58. computeSubnet: compute_subnet (13)
    59. outboundType: UserDefinedRouting (14)
    60. cloudName: AzureUSGovernmentCloud (15)
    61. pullSecret: '{"auths": ...}' (1)
    62. sshKey: ssh-ed25519 AAAA... (16)
    63. publish: Internal (17)
    1Required.
    2If you do not provide these parameters and values, the installation program provides the default value.
    3The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
    4Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines’ cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.

    If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

    5You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
    6Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
    7The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
    8Specify the name of the resource group that contains the DNS zone for your base domain.
    9Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
    10If you use an existing VNet, specify the name of the resource group that contains it.
    11If you use an existing VNet, specify its name.
    12If you use an existing VNet, specify the name of the subnet to host the control plane machines.
    13If you use an existing VNet, specify the name of the subnet to host the compute machines.
    14You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
    15Specify the name of the Azure cloud environment to deploy your cluster to. Set AzureUSGovernmentCloud to deploy to a Microsoft Azure Government (MAG) region. The default value is AzurePublicCloud.
    16You can optionally provide the sshKey value that you use to access the machines in your cluster.

    For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

    17How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External.

    Configuring the cluster-wide proxy during installation

    Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

    Prerequisites

    • You have an existing install-config.yaml file.

    • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

      The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

      For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

    Procedure

    1. Edit your install-config.yaml file and add the proxy settings. For example:

      1. apiVersion: v1
      2. baseDomain: my.domain.com
      3. proxy:
      4. httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
      5. httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
      6. noProxy: example.com (3)
      7. additionalTrustBundle: | (4)
      8. -----BEGIN CERTIFICATE-----
      9. <MY_TRUSTED_CA_CERT>
      10. -----END CERTIFICATE-----
      11. additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
      1A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
      2A proxy URL to use for creating HTTPS connections outside the cluster.
      3A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
      4If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle.
      5Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

      The installation program does not support the proxy readinessEndpoints field.

      If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

      1. $ ./openshift-install wait-for install-complete log-level debug
    2. Save the file and reference it when installing OKD.

    The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

    Only the Proxy object named cluster is supported, and no additional proxies can be created.

    Additional resources

    • For more details about Accelerated Networking, see .

    Deploying the cluster

    You can install OKD on a compatible cloud platform.

    You can run the create cluster command of the installation program only once, during initial installation.

    Prerequisites

    • Configure an account with the cloud platform that hosts your cluster.

    • Obtain the OKD installation program and the pull secret for your cluster.

    • Verify the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

    Procedure

    • Change to the directory that contains the installation program and initialize the cluster deployment:

      1. $ ./openshift-install create cluster --dir <installation_directory> \ (1)
      2. --log-level=info (2)
      1For <installation_directory>, specify the location of your customized ./install-config.yaml file.
      2To view different installation details, specify warn, debug, or error instead of info.

    Verification

    When the cluster deployment completes successfully:

    • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.

    • Credential information also outputs to <installation_directory>/.openshift_install.log.

    Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

    Example output

    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

    Installing the OpenShift CLI by downloading the binary

    You can install the OpenShift CLI (oc) to interact with OKD from a command-line interface. You can install oc on Linux, Windows, or macOS.

    If you installed an earlier version of oc, you cannot use it to complete all of the commands in OKD 4.13. Download and install the new version of oc.

    Installing the OpenShift CLI on Linux

    You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

    Procedure

    1. Navigate to and choose the folder for your operating system and architecture.

    2. Download oc.tar.gz.

    3. Unpack the archive:

      1. $ tar xvf <file>
    4. Place the oc binary in a directory that is on your PATH.

      To check your PATH, execute the following command:

      1. $ echo $PATH

    After you install the OpenShift CLI, it is available using the oc command:

    1. $ oc <command>

    Installing the OpenShift CLI on Windows

    You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

    Procedure

    1. Navigate to and choose the folder for your operating system and architecture.

    2. Download oc.zip.

    3. Unzip the archive with a ZIP program.

    4. Move the oc binary to a directory that is on your PATH.

      To check your PATH, open the command prompt and execute the following command:

      1. C:\> path

    After you install the OpenShift CLI, it is available using the oc command:

    1. C:\> oc <command>

    You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

    Procedure

    1. Navigate to and choose the folder for your operating system and architecture.

    2. Download oc.tar.gz.

    3. Unpack and unzip the archive.

    4. Move the oc binary to a directory on your PATH.

      To check your PATH, open a terminal and execute the following command:

      1. $ echo $PATH

    After you install the OpenShift CLI, it is available using the oc command:

    1. $ oc <command>

    You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

    Prerequisites

    • You deployed an OKD cluster.

    • You installed the oc CLI.

    Procedure

    1. Export the kubeadmin credentials:

      1. $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
      1For <installation_directory>, specify the path to the directory that you stored the installation files in.
    2. Verify you can run oc commands successfully using the exported configuration:

      Example output

    Additional resources

    • See for more details about accessing and understanding the OKD web console.

    Additional resources

    Next steps