ReplicationController
A ReplicationController ensures that a specified number of pod replicas are running at any one time. In other words, a ReplicationController makes sure that a pod or a homogeneous set of pods is always up and available.
If there are too many pods, the ReplicationController terminates the extra pods. If there are too few, the ReplicationController starts more pods. Unlike manually created pods, the pods maintained by a ReplicationController are automatically replaced if they fail, are deleted, or are terminated. For example, your pods are re-created on a node after disruptive maintenance such as a kernel upgrade. For this reason, you should use a ReplicationController even if your application requires only a single pod. A ReplicationController is similar to a process supervisor, but instead of supervising individual processes on a single node, the ReplicationController supervises multiple pods across multiple nodes.
ReplicationController is often abbreviated to “rc” in discussion, and as a shortcut in kubectl commands.
A simple case is to create one ReplicationController object to reliably run one instance of a Pod indefinitely. A more complex use case is to run several identical replicas of a replicated service, such as web servers.
Running an example ReplicationController
This example ReplicationController config runs three copies of the nginx web server.
Run the example job by downloading the example file and then running this command:
The output is similar to this:
Check on the status of the ReplicationController using this command:
kubectl describe replicationcontrollers/nginx
The output is similar to this:
Here, three pods are created, but none is running yet, perhaps because the image is being pulled. A little later, the same command may show:
Pods Status: 3 Running / 0 Waiting / 0 Succeeded / 0 Failed
To list all the pods that belong to the ReplicationController in a machine readable form, you can use a command like this:
The output is similar to this:
nginx-3ntk0 nginx-4ok8v nginx-qrm3m
Here, the selector is the same as the selector for the ReplicationController (seen in the kubectl describe
output), and in a different form in replication.yaml
. The --output=jsonpath
option specifies an expression with the name from each pod in the returned list.
Writing a ReplicationController Spec
As with all other Kubernetes config, a ReplicationController needs apiVersion
, kind
, and metadata
fields. The name of a ReplicationController object must be a valid . For general information about working with configuration files, see object management.
A ReplicationController also needs a .
The .spec.template
is the only required field of the .spec
.
In addition to required fields for a Pod, a pod template in a ReplicationController must specify appropriate labels and an appropriate restart policy. For labels, make sure not to overlap with other controllers. See pod selector.
Only a equal to Always
is allowed, which is the default if not specified.
For local container restarts, ReplicationControllers delegate to an agent on the node, for example the Kubelet or Docker.
Labels on the ReplicationController
The ReplicationController can itself have labels (.metadata.labels
). Typically, you would set these the same as the .spec.template.metadata.labels
; if .metadata.labels
is not specified then it defaults to .spec.template.metadata.labels
. However, they are allowed to be different, and the .metadata.labels
do not affect the behavior of the ReplicationController.
Pod Selector
The .spec.selector
field is a . A ReplicationController manages all the pods with labels that match the selector. It does not distinguish between pods that it created or deleted and pods that another person or process created or deleted. This allows the ReplicationController to be replaced without affecting the running pods.
If specified, the .spec.template.metadata.labels
must be equal to the .spec.selector
, or it will be rejected by the API. If is unspecified, it will be defaulted to .spec.template.metadata.labels
.
Also you should not normally create any pods whose labels match this selector, either directly, with another ReplicationController, or with another controller such as Job. If you do so, the ReplicationController thinks that it created the other pods. Kubernetes does not stop you from doing this.
If you do end up with multiple controllers that have overlapping selectors, you will have to manage the deletion yourself (see below).
Multiple Replicas
You can specify how many pods should run concurrently by setting .spec.replicas
to the number of pods you would like to have running concurrently. The number running at any time may be higher or lower, such as if the replicas were just increased or decreased, or if a pod is gracefully shutdown, and a replacement starts early.
If you do not specify .spec.replicas
, then it defaults to 1.
Deleting a ReplicationController and its Pods
To delete a ReplicationController and all its pods, use . Kubectl will scale the ReplicationController to zero and wait for it to delete each pod before deleting the ReplicationController itself. If this kubectl command is interrupted, it can be restarted.
When using the REST API or Go client library, you need to do the steps explicitly (scale replicas to 0, wait for pod deletions, then delete the ReplicationController).
You can delete a ReplicationController without affecting any of its pods.
Using kubectl, specify the --cascade=orphan
option to kubectl delete.
When using the REST API or Go client library, you can delete the ReplicationController object.
Once the original is deleted, you can create a new ReplicationController to replace it. As long as the old and new .spec.selector
are the same, then the new one will adopt the old pods. However, it will not make any effort to make existing pods match a new, different pod template. To update pods to a new spec in a controlled way, use a .
Isolating pods from a ReplicationController
Pods may be removed from a ReplicationController’s target set by changing their labels. This technique may be used to remove pods from service for debugging and data recovery. Pods that are removed in this way will be replaced automatically (assuming that the number of replicas is not also changed).
Common usage patterns
Rescheduling
Scaling
The ReplicationController enables scaling the number of replicas up or down, either manually or by an auto-scaling control agent, by updating the replicas
field.
Rolling updates
The ReplicationController is designed to facilitate rolling updates to a service by replacing pods one-by-one.
As explained in , the recommended approach is to create a new ReplicationController with 1 replica, scale the new (+1) and old (-1) controllers one by one, and then delete the old controller after it reaches 0 replicas. This predictably updates the set of pods regardless of unexpected failures.
Ideally, the rolling update controller would take application readiness into account, and would ensure that a sufficient number of pods were productively serving at any given time.
The two ReplicationControllers would need to create pods with at least one differentiating label, such as the image tag of the primary container of the pod, since it is typically image updates that motivate rolling updates.
In addition to running multiple releases of an application while a rolling update is in progress, it’s common to run multiple releases for an extended period of time, or even continuously, using multiple release tracks. The tracks would be differentiated by labels.
For instance, a service might target all pods with tier in (frontend), environment in (prod)
. Now say you have 10 replicated pods that make up this tier. But you want to be able to ‘canary’ a new version of this component. You could set up a ReplicationController with replicas
set to 9 for the bulk of the replicas, with labels tier=frontend, environment=prod, track=stable
, and another ReplicationController with replicas
set to 1 for the canary, with labels tier=frontend, environment=prod, track=canary
. Now the service is covering both the canary and non-canary pods. But you can mess with the ReplicationControllers separately to test things out, monitor the results, etc.
Using ReplicationControllers with Services
Multiple ReplicationControllers can sit behind a single service, so that, for example, some traffic goes to the old version, and some goes to the new version.
A ReplicationController will never terminate on its own, but it isn’t expected to be as long-lived as services. Services may be composed of pods controlled by multiple ReplicationControllers, and it is expected that many ReplicationControllers may be created and destroyed over the lifetime of a service (for instance, to perform an update of pods that run the service). Both services themselves and their clients should remain oblivious to the ReplicationControllers that maintain the pods of the services.
Writing programs for Replication
Pods created by a ReplicationController are intended to be fungible and semantically identical, though their configurations may become heterogeneous over time. This is an obvious fit for replicated stateless servers, but ReplicationControllers can also be used to maintain availability of master-elected, sharded, and worker-pool applications. Such applications should use dynamic work assignment mechanisms, such as the RabbitMQ work queues, as opposed to static/one-time customization of the configuration of each pod, which is considered an anti-pattern. Any pod customization performed, such as vertical auto-sizing of resources (for example, cpu or memory), should be performed by another online controller process, not unlike the ReplicationController itself.
The ReplicationController ensures that the desired number of pods matches its label selector and are operational. Currently, only terminated pods are excluded from its count. In the future, and other information available from the system may be taken into account, we may add more controls over the replacement policy, and we plan to emit events that could be used by external clients to implement arbitrarily sophisticated replacement and/or scale-down policies.
The ReplicationController is forever constrained to this narrow responsibility. It itself will not perform readiness nor liveness probes. Rather than performing auto-scaling, it is intended to be controlled by an external auto-scaler (as discussed in #492), which would change its field. We will not add scheduling policies (for example, ) to the ReplicationController. Nor should it verify that the pods controlled match the currently specified template, as that would obstruct auto-sizing and other automated processes. Similarly, completion deadlines, ordering dependencies, configuration expansion, and other features belong elsewhere. We even plan to factor out the mechanism for bulk pod creation (#170).
The ReplicationController is intended to be a composable building-block primitive. We expect higher-level APIs and/or tools to be built on top of it and other complementary primitives for user convenience in the future. The “macro” operations currently supported by kubectl (run, scale) are proof-of-concept examples of this. For instance, we could imagine something like managing ReplicationControllers, auto-scalers, services, scheduling policies, canaries, etc.
API Object
Replication controller is a top-level resource in the Kubernetes REST API. More details about the API object can be found at: .
Alternatives to ReplicationController
ReplicaSet
ReplicaSet is the next-generation ReplicationController that supports the new . It’s mainly used by Deployment as a mechanism to orchestrate pod creation, deletion and updates. Note that we recommend using Deployments instead of directly using Replica Sets, unless you require custom update orchestration or don’t require updates at all.
Deployment (Recommended)
Deployment is a higher-level API object that updates its underlying Replica Sets and their Pods. Deployments are recommended if you want this rolling update functionality because, they are declarative, server-side, and have additional features.
Bare Pods
Unlike in the case where a user directly created pods, a ReplicationController replaces pods that are deleted or terminated for any reason, such as in the case of node failure or disruptive node maintenance, such as a kernel upgrade. For this reason, we recommend that you use a ReplicationController even if your application requires only a single pod. Think of it similarly to a process supervisor, only it supervises multiple pods across multiple nodes instead of individual processes on a single node. A ReplicationController delegates local container restarts to some agent on the node (for example, Kubelet or Docker).
DaemonSet
Use a instead of a ReplicationController for pods that provide a machine-level function, such as machine monitoring or machine logging. These pods have a lifetime that is tied to a machine lifetime: the pod needs to be running on the machine before other pods start, and are safe to terminate when the machine is otherwise ready to be rebooted/shutdown.
- Learn about Pods.
ReplicationController
is part of the Kubernetes REST API. Read the object definition to understand the API for replication controllers.