Numbers
Abstract supertype for all number types.
Core.Real — Type
Abstract supertype for all real numbers.
Core.AbstractFloat — Type
AbstractFloat <: Real
Abstract supertype for all floating point numbers.
Core.Integer — Type
Integer <: Real
Abstract supertype for all integers.
Core.Signed — Type
Signed <: Integer
Abstract supertype for all signed integers.
Core.Unsigned — Type
Unsigned <: Integer
Abstract supertype for all unsigned integers.
Base.AbstractIrrational — Type
AbstractIrrational <: Real
Number type representing an exact irrational value, which is automatically rounded to the correct precision in arithmetic operations with other numeric quantities.
Subtypes MyIrrational <: AbstractIrrational
should implement at least ==(::MyIrrational, ::MyIrrational)
, hash(x::MyIrrational, h::UInt)
, and convert(::Type{F}, x::MyIrrational) where {F <: Union{BigFloat,Float32,Float64}}
.
If a subtype is used to represent values that may occasionally be rational (e.g. a square-root type that represents √n
for integers n
will give a rational result when n
is a perfect square), then it should also implement isinteger
, iszero
, isone
, and ==
with Real
values (since all of these default to false
for AbstractIrrational
types), as well as defining to equal that of the corresponding Rational
.
— Type
Float16 <: AbstractFloat
16-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 5 exponent, 10 fraction bits.
— Type
Float32 <: AbstractFloat
32-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 8 exponent, 23 fraction bits.
— Type
Float64 <: AbstractFloat
64-bit floating point number type (IEEE 754 standard).
Binary format: 1 sign, 11 exponent, 52 fraction bits.
— Type
BigFloat <: AbstractFloat
Arbitrary precision floating point number type.
— Type
Bool <: Integer
Boolean type, containing the values true
and false
.
Bool
is a kind of number: false
is numerically equal to 0
and true
is numerically equal to 1
. Moreover, false
acts as a multiplicative “strong zero”:
julia> false == 0
true
julia> true == 1
true
julia> 0 * NaN
NaN
julia> false * NaN
0.0
— Type
Int8 <: Signed
8-bit signed integer type.
— Type
UInt8 <: Unsigned
8-bit unsigned integer type.
— Type
Int16 <: Signed
16-bit signed integer type.
— Type
UInt16 <: Unsigned
16-bit unsigned integer type.
— Type
Int32 <: Signed
32-bit signed integer type.
— Type
UInt32 <: Unsigned
32-bit unsigned integer type.
— Type
Int64 <: Signed
64-bit signed integer type.
— Type
UInt64 <: Unsigned
64-bit unsigned integer type.
— Type
Int128 <: Signed
128-bit signed integer type.
— Type
UInt128 <: Unsigned
128-bit unsigned integer type.
— Type
BigInt <: Signed
Arbitrary precision integer type.
— Type
Complex{T<:Real} <: Number
Complex number type with real and imaginary part of type T
.
ComplexF16
, ComplexF32
and ComplexF64
are aliases for Complex{Float16}
, Complex{Float32}
and Complex{Float64}
respectively.
— Type
Rational{T<:Integer} <: Real
Rational number type, with numerator and denominator of type T
. Rationals are checked for overflow.
— Type
Irrational{sym} <: AbstractIrrational
Number type representing an exact irrational value denoted by the symbol sym
.
— Function
digits([T<:Integer], n::Integer; base::T = 10, pad::Integer = 1)
Return an array with element type T
(default Int
) of the digits of n
in the given base, optionally padded with zeros to a specified size. More significant digits are at higher indices, such that n == sum(digits[k]*base^(k-1) for k=1:length(digits))
.
Examples
julia> digits(10, base = 10)
2-element Vector{Int64}:
0
1
julia> digits(10, base = 2)
4-element Vector{Int64}:
0
1
0
1
julia> digits(10, base = 2, pad = 6)
6-element Vector{Int64}:
0
1
0
1
0
0
— Function
digits!(array, n::Integer; base::Integer = 10)
Fills an array of the digits of n
in the given base. More significant digits are at higher indices. If the array length is insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess portion is filled with zeros.
Examples
julia> digits!([2,2,2,2], 10, base = 2)
4-element Vector{Int64}:
0
1
0
1
julia> digits!([2,2,2,2,2,2], 10, base = 2)
6-element Vector{Int64}:
0
1
0
1
0
0
— Function
bitstring(n)
A string giving the literal bit representation of a number.
Examples
julia> bitstring(4)
"0000000000000000000000000000000000000000000000000000000000000100"
julia> bitstring(2.2)
"0100000000000001100110011001100110011001100110011001100110011010"
— Function
parse(::Type{Platform}, triplet::AbstractString)
Parses a string platform triplet back into a Platform
object.
parse(type, str; base)
Parse a string as a number. For Integer
types, a base can be specified (the default is 10). For floating-point types, the string is parsed as a decimal floating-point number. Complex
types are parsed from decimal strings of the form "R±Iim"
as a Complex(R,I)
of the requested type; "i"
or "j"
can also be used instead of "im"
, and "R"
or "Iim"
are also permitted. If the string does not contain a valid number, an error is raised.
Julia 1.1
parse(Bool, str)
requires at least Julia 1.1.
Examples
julia> parse(Int, "1234")
1234
julia> parse(Int, "1234", base = 5)
194
julia> parse(Int, "afc", base = 16)
2812
julia> parse(Float64, "1.2e-3")
0.0012
julia> parse(Complex{Float64}, "3.2e-1 + 4.5im")
0.32 + 4.5im
Base.tryparse — Function
tryparse(type, str; base)
Like , but returns either a value of the requested type, or nothing if the string does not contain a valid number.
Base.big — Function
big(x)
Convert a number to a maximum precision representation (typically or BigFloat
). See BigFloat for information about some pitfalls with floating-point numbers.
Base.signed — Function
signed(T::Integer)
Convert an integer bitstype to the signed type of the same size.
Examples
julia> signed(UInt16)
Int16
julia> signed(UInt64)
Int64
signed(x)
Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking for overflow.
— Function
unsigned(T::Integer)
Examples
julia> unsigned(Int16)
UInt16
julia> unsigned(UInt64)
UInt64
— Method
float(x)
Convert a number or array to a floating point data type.
— Function
significand(x)
Extract the significand(s)
(a.k.a. mantissa), in binary representation, of a floating-point number. If x
is a non-zero finite number, then the result will be a number of the same type on the interval $[1,2)$. Otherwise x
is returned.
Examples
— Function
exponent(x::AbstractFloat) -> Int
Get the exponent of a normalized floating-point number. Returns the largest integer y
such that 2^y ≤ abs(x)
.
— Method
complex(r, [i])
Convert real numbers or arrays to complex. i
defaults to zero.
Examples
julia> complex(7)
julia> complex([1, 2, 3])
3-element Vector{Complex{Int64}}:
1 + 0im
2 + 0im
3 + 0im
— Function
bswap(n)
Reverse the byte order of n
.
(See also ntoh and to convert between the current native byte order and big-endian order.)
Examples
julia> a = bswap(0x10203040)
0x40302010
julia> bswap(a)
0x10203040
julia> string(1, base = 2)
"1"
julia> string(bswap(1), base = 2)
"100000000000000000000000000000000000000000000000000000000"
— Function
hex2bytes(s::Union{AbstractString,AbstractVector{UInt8}})
Given a string or array s
of ASCII codes for a sequence of hexadecimal digits, returns a Vector{UInt8}
of bytes corresponding to the binary representation: each successive pair of hexadecimal digits in s
gives the value of one byte in the return vector.
The length of s
must be even, and the returned array has half of the length of s
. See also hex2bytes! for an in-place version, and for the inverse.
Examples
julia> s = string(12345, base = 16)
"3039"
julia> hex2bytes(s)
2-element Vector{UInt8}:
0x30
0x39
julia> a = b"01abEF"
6-element Base.CodeUnits{UInt8, String}:
0x30
0x31
0x61
0x62
0x45
0x46
julia> hex2bytes(a)
3-element Vector{UInt8}:
0x01
0xab
0xef
— Function
hex2bytes!(d::AbstractVector{UInt8}, s::Union{String,AbstractVector{UInt8}})
Convert an array s
of bytes representing a hexadecimal string to its binary representation, similar to hex2bytes except that the output is written in-place in d
. The length of s
must be exactly twice the length of d
.
Base.bytes2hex — Function
bytes2hex(a::AbstractArray{UInt8}) -> String
bytes2hex(io::IO, a::AbstractArray{UInt8})
Convert an array a
of bytes to its hexadecimal string representation, either returning a String
via bytes2hex(a)
or writing the string to an io
stream via bytes2hex(io, a)
. The hexadecimal characters are all lowercase.
Examples
julia> a = string(12345, base = 16)
"3039"
julia> b = hex2bytes(a)
2-element Vector{UInt8}:
0x30
0x39
julia> bytes2hex(b)
"3039"
Base.one — Function
one(x)
one(T::type)
Return a multiplicative identity for x
: a value such that one(x)*x == x*one(x) == x
. Alternatively one(T)
can take a type T
, in which case one
returns a multiplicative identity for any x
of type T
.
If possible, one(x)
returns a value of the same type as x
, and one(T)
returns a value of type T
. However, this may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative identity must be dimensionless. In that case, one(x)
should return an identity value of the same precision (and shape, for matrices) as x
.
If you want a quantity that is of the same type as x
, or of type T
, even if x
is dimensionful, use instead.
Examples
julia> one(3.7)
1.0
julia> one(Int)
1
julia> import Dates; one(Dates.Day(1))
1
— Function
oneunit(x::T)
oneunit(T::Type)
Returns T(one(x))
, where T
is either the type of the argument or (if a type is passed) the argument. This differs from one for dimensionful quantities: one
is dimensionless (a multiplicative identity) while oneunit
is dimensionful (of the same type as x
, or of type T
).
Examples
julia> oneunit(3.7)
1.0
julia> import Dates; oneunit(Dates.Day)
1 day
Base.zero — Function
zero(x)
zero(::Type)
Get the additive identity element for the type of x
(x
can also specify the type itself).
Examples
julia> zero(1)
0
julia> zero(big"2.0")
0.0
julia> zero(rand(2,2))
2×2 Matrix{Float64}:
0.0 0.0
0.0 0.0
Base.im — Constant
im
The imaginary unit.
Examples
julia> im * im
-1 + 0im
Base.MathConstants.pi — Constant
π
pi
The constant pi.
Examples
julia> pi
π = 3.1415926535897...
Base.MathConstants.ℯ — Constant
ℯ
e
The constant ℯ.
Examples
julia> ℯ
ℯ = 2.7182818284590...
Base.MathConstants.catalan — Constant
catalan
Catalan’s constant.
Examples
julia> Base.MathConstants.catalan
catalan = 0.9159655941772...
Base.MathConstants.eulergamma — Constant
γ
eulergamma
Euler’s constant.
Examples
julia> Base.MathConstants.eulergamma
γ = 0.5772156649015...
Base.MathConstants.golden — Constant
φ
golden
The golden ratio.
Examples
julia> Base.MathConstants.golden
φ = 1.6180339887498...
Base.Inf — Constant
Inf, Inf64
Positive infinity of type .
— Constant
Inf32
Positive infinity of type Float32.
Base.Inf16 — Constant
Inf16
Positive infinity of type .
— Constant
NaN, NaN64
A not-a-number value of type Float64.
Base.NaN32 — Constant
NaN32
A not-a-number value of type .
— Constant
NaN16
A not-a-number value of type Float16.
Base.issubnormal — Function
issubnormal(f) -> Bool
Test whether a floating point number is subnormal.
Base.isfinite — Function
isfinite(f) -> Bool
Test whether a number is finite.
Examples
julia> isfinite(5)
true
julia> isfinite(NaN32)
false
Base.isinf — Function
isinf(f) -> Bool
Test whether a number is infinite.
Base.isnan — Function
isnan(f) -> Bool
Test whether a number value is a NaN, an indeterminate value which is neither an infinity nor a finite number (“not a number”).
Base.iszero — Function
Return true
if x == zero(x)
; if x
is an array, this checks whether all of the elements of x
are zero.
Examples
julia> iszero(0.0)
true
julia> iszero([1, 9, 0])
false
julia> iszero([false, 0, 0])
true
Base.isone — Function
isone(x)
Return true
if x == one(x)
; if x
is an array, this checks whether x
is an identity matrix.
Examples
julia> isone(1.0)
true
julia> isone([1 0; 0 2])
false
julia> isone([1 0; 0 true])
true
Base.nextfloat — Function
nextfloat(x::AbstractFloat, n::Integer)
The result of n
iterative applications of nextfloat
to x
if n >= 0
, or -n
applications of prevfloat
if n < 0
.
Return the smallest floating point number y
of the same type as x
such x < y
. If no such y
exists (e.g. if x
is Inf
or NaN
), then return x
.
— Function
The result of n
iterative applications of prevfloat
to x
if n >= 0
, or -n
applications of nextfloat
if n < 0
.
prevfloat(x::AbstractFloat)
Return the largest floating point number y
of the same type as x
such y < x
. If no such y
exists (e.g. if x
is -Inf
or NaN
), then return x
.
— Function
isinteger(x) -> Bool
Test whether x
is numerically equal to some integer.
Examples
julia> isinteger(4.0)
true
— Function
isreal(x) -> Bool
Test whether x
or all its elements are numerically equal to some real number including infinities and NaNs. isreal(x)
is true if isequal(x, real(x))
is true.
Examples
julia> isreal(5.)
true
julia> isreal(Inf + 0im)
true
julia> isreal([4.; complex(0,1)])
false
— Method
Float32(x [, mode::RoundingMode])
Create a Float32
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float32(1/3, RoundDown)
0.3333333f0
julia> Float32(1/3, RoundUp)
0.33333334f0
See RoundingMode for available rounding modes.
Core.Float64 — Method
Float64(x [, mode::RoundingMode])
Create a Float64
from x
. If x
is not exactly representable then mode
determines how x
is rounded.
Examples
julia> Float64(pi, RoundDown)
3.141592653589793
julia> Float64(pi, RoundUp)
3.1415926535897936
See for available rounding modes.
— Function
rounding(T)
Get the current floating point rounding mode for type T
, controlling the rounding of basic arithmetic functions (+, , *, and sqrt) and type conversion.
See for available modes.
— Method
setrounding(T, mode)
Set the rounding mode of floating point type T
, controlling the rounding of basic arithmetic functions (+, , *, and sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding modes other than the default .
Note that this is currently only supported for T == BigFloat
.
Warning
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
— Method
setrounding(f::Function, T, mode)
Change the rounding mode of floating point type T
for the duration of f
. It is logically equivalent to:
old = rounding(T)
setrounding(T, mode)
f()
setrounding(T, old)
See RoundingMode for available rounding modes.
Base.Rounding.get_zero_subnormals — Function
get_zero_subnormals() -> Bool
Return false
if operations on subnormal floating-point values (“denormals”) obey rules for IEEE arithmetic, and true
if they might be converted to zeros.
Warning
This function only affects the current thread.
Base.Rounding.set_zero_subnormals — Function
set_zero_subnormals(yes::Bool) -> Bool
If yes
is false
, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values (“denormals”). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to zero. Returns true
unless yes==true
but the hardware does not support zeroing of subnormal numbers.
set_zero_subnormals(true)
can speed up some computations on some hardware. However, it can break identities such as (x-y==0) == (x==y)
.
Warning
This function only affects the current thread.
Base.count_ones — Function
count_ones(x::Integer) -> Integer
Number of ones in the binary representation of x
.
Examples
julia> count_ones(7)
3
Base.count_zeros — Function
count_zeros(x::Integer) -> Integer
Number of zeros in the binary representation of x
.
Examples
julia> count_zeros(Int32(2 ^ 16 - 1))
16
Base.leading_zeros — Function
leading_zeros(x::Integer) -> Integer
Number of zeros leading the binary representation of x
.
Examples
julia> leading_zeros(Int32(1))
31
Base.leading_ones — Function
leading_ones(x::Integer) -> Integer
Number of ones leading the binary representation of x
.
Examples
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
Base.trailing_zeros — Function
trailing_zeros(x::Integer) -> Integer
Number of zeros trailing the binary representation of x
.
Examples
julia> trailing_zeros(2)
1
Base.trailing_ones — Function
trailing_ones(x::Integer) -> Integer
Number of ones trailing the binary representation of x
.
Examples
julia> trailing_ones(3)
2
Base.isodd — Function
isodd(x::Integer) -> Bool
Return true
if x
is odd (that is, not divisible by 2), and false
otherwise.
Examples
julia> isodd(9)
true
julia> isodd(10)
false
Base.iseven — Function
iseven(x::Integer) -> Bool
Return true
if x
is even (that is, divisible by 2), and false
otherwise.
Examples
julia> iseven(9)
false
julia> iseven(10)
true
Core.@int128_str — Macro
@int128_str str
@int128_str(str)
@int128_str
parses a string into a Int128 Throws an ArgumentError
if the string is not a valid integer
Core.@uint128_str — Macro
@uint128_str str
@uint128_str(str)
@uint128_str
parses a string into a UInt128 Throws an ArgumentError
if the string is not a valid integer
The BigFloat and types implements arbitrary-precision floating point and integer arithmetic, respectively. For BigFloat the is used, and for BigInt the is used.
Base.MPFR.BigFloat — Method
BigFloat(x::Union{Real, AbstractString} [, rounding::RoundingMode=rounding(BigFloat)]; [precision::Integer=precision(BigFloat)])
Create an arbitrary precision floating point number from x
, with precision precision
. The rounding
argument specifies the direction in which the result should be rounded if the conversion cannot be done exactly. If not provided, these are set by the current global values.
BigFloat(x::Real)
is the same as convert(BigFloat,x)
, except if x
itself is already BigFloat
, in which case it will return a value with the precision set to the current global precision; convert
will always return x
.
BigFloat(x::AbstractString)
is identical to . This is provided for convenience since decimal literals are converted to Float64
when parsed, so BigFloat(2.1)
may not yield what you expect.
Julia 1.1
precision
as a keyword argument requires at least Julia 1.1. In Julia 1.0 precision
is the second positional argument (BigFloat(x, precision)
).
Examples
julia> BigFloat(2.1) # 2.1 here is a Float64
2.100000000000000088817841970012523233890533447265625
julia> BigFloat("2.1") # the closest BigFloat to 2.1
2.099999999999999999999999999999999999999999999999999999999999999999999999999986
julia> BigFloat("2.1", RoundUp)
2.100000000000000000000000000000000000000000000000000000000000000000000000000021
julia> BigFloat("2.1", RoundUp, precision=128)
2.100000000000000000000000000000000000007
See also
- @big_str
- and setrounding
- and setprecision
Base.precision — Function
precision(num::AbstractFloat)
Get the precision of a floating point number, as defined by the effective number of bits in the significand.
Base.precision — Method
precision(BigFloat)
Get the precision (in bits) currently used for arithmetic.
— Function
setprecision([T=BigFloat,] precision::Int)
Set the precision (in bits) to be used for T
arithmetic.
Warning
This function is not thread-safe. It will affect code running on all threads, but its behavior is undefined if called concurrently with computations that use the setting.
setprecision(f::Function, [T=BigFloat,] precision::Integer)
Change the T
arithmetic precision (in bits) for the duration of f
. It is logically equivalent to:
old = precision(BigFloat)
setprecision(BigFloat, precision)
f()
setprecision(BigFloat, old)
Often used as setprecision(T, precision) do ... end
Note: nextfloat()
, prevfloat()
do not use the precision mentioned by setprecision
Base.GMP.BigInt — Method
BigInt(x)
Create an arbitrary precision integer. x
may be an Int
(or anything that can be converted to an Int
). The usual mathematical operators are defined for this type, and results are promoted to a .
Instances can be constructed from strings via parse, or using the big
string literal.
Examples
julia> parse(BigInt, "42")
42
julia> big"313"
313
julia> BigInt(10)^19
10000000000000000000
Core.@big_str — Macro
@big_str str
Parse a string into a or BigFloat, and throw an ArgumentError
if the string is not a valid number. For integers is allowed in the string as a separator.
Examples