Mathematics
Unary minus operator.
See also: abs, .
Examples
-1
julia> -(2)
-2
julia> -[1 2; 3 4]
2×2 Matrix{Int64}:
-1 -2
-3 -4
— Function
+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
Examples
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
dt::Date + t::Time -> DateTime
The addition of a Date
with a Time
produces a DateTime
. The hour, minute, second, and millisecond parts of the Time
are used along with the year, month, and day of the Date
to create the new DateTime
. Non-zero microseconds or nanoseconds in the Time
type will result in an InexactError
being thrown.
— Method
-(x, y)
Subtraction operator.
Examples
julia> 2 - 3
-1
julia> -(2, 4.5)
-2.5
— Method
*(x, y...)
Multiplication operator. x*y*z*...
calls this function with all arguments, i.e. *(x, y, z, ...)
.
Examples
julia> 2 * 7 * 8
112
julia> *(2, 7, 8)
112
— Function
/(x, y)
Right division operator: multiplication of x
by the inverse of y
on the right. Gives floating-point results for integer arguments.
Examples
julia> 1/2
0.5
julia> 4/2
2.0
julia> 4.5/2
2.25
A / B
Matrix right-division: A / B
is equivalent to (B' \ A')'
where is the left-division operator. For square matrices, the result X
is such that A == X*B
.
See also: rdiv!.
Examples
julia> A = Float64[1 4 5; 3 9 2]; B = Float64[1 4 2; 3 4 2; 8 7 1];
julia> X = A / B
2×3 Matrix{Float64}:
-0.65 3.75 -1.2
3.25 -2.75 1.0
julia> isapprox(A, X*B)
true
julia> isapprox(X, A*pinv(B))
true
— Method
\(x, y)
Left division operator: multiplication of y
by the inverse of x
on the left. Gives floating-point results for integer arguments.
Examples
julia> 3 \ 6
2.0
julia> inv(3) * 6
2.0
julia> A = [4 3; 2 1]; x = [5, 6];
julia> A \ x
2-element Vector{Float64}:
6.5
-7.0
julia> inv(A) * x
2-element Vector{Float64}:
6.5
-7.0
— Method
^(x, y)
Exponentiation operator. If x
is a matrix, computes matrix exponentiation.
If y
is an Int
literal (e.g. 2
in x^2
or -3
in x^-3
), the Julia code x^y
is transformed by the compiler to Base.literal_pow(^, x, Val(y))
, to enable compile-time specialization on the value of the exponent. (As a default fallback we have Base.literal_pow(^, x, Val(y)) = ^(x,y)
, where usually ^ == Base.^
unless ^
has been defined in the calling namespace.) If y
is a negative integer literal, then Base.literal_pow
transforms the operation to inv(x)^-y
by default, where -y
is positive.
Examples
julia> 3^5
243
julia> A = [1 2; 3 4]
2×2 Matrix{Int64}:
1 2
3 4
julia> A^3
2×2 Matrix{Int64}:
37 54
81 118
— Function
fma(x, y, z)
Computes x*y+z
without rounding the intermediate result x*y
. On some systems this is significantly more expensive than x*y+z
. fma
is used to improve accuracy in certain algorithms. See muladd.
Base.muladd — Function
muladd(A, y, z)
Combined multiply-add, A*y .+ z
, for matrix-matrix or matrix-vector multiplication. The result is always the same size as A*y
, but z
may be smaller, or a scalar.
Julia 1.6
These methods require Julia 1.6 or later.
Examples
julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; z=[0, 100];
julia> muladd(A, B, z)
2×2 Matrix{Float64}:
3.0 3.0
107.0 107.0
muladd(x, y, z)
Combined multiply-add: computes x*y+z
, but allowing the add and multiply to be merged with each other or with surrounding operations for performance. For example, this may be implemented as an if the hardware supports it efficiently. The result can be different on different machines and can also be different on the same machine due to constant propagation or other optimizations. See fma.
Examples
julia> muladd(3, 2, 1)
7
julia> 3 * 2 + 1
7
Base.inv — Method
inv(x)
Return the multiplicative inverse of x
, such that x*inv(x)
or inv(x)*x
yields (the multiplicative identity) up to roundoff errors.
If x
is a number, this is essentially the same as one(x)/x
, but for some types inv(x)
may be slightly more efficient.
Examples
julia> inv(2)
0.5
julia> inv(1 + 2im)
0.2 - 0.4im
julia> inv(1 + 2im) * (1 + 2im)
1.0 + 0.0im
julia> inv(2//3)
3//2
Julia 1.2
inv(::Missing)
requires at least Julia 1.2.
— Function
div(x, y)
÷(x, y)
The quotient from Euclidean (integer) division. Generally equivalent to a mathematical operation x/y without a fractional part.
Examples
julia> 9 ÷ 4
2
julia> -5 ÷ 3
-1
julia> 5.0 ÷ 2
2.0
julia> div.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-1 -1 -1 0 0 0 0 0 1 1 1
— Function
fld(x, y)
Largest integer less than or equal to x/y
. Equivalent to div(x, y, RoundDown)
.
Examples
julia> fld(7.3,5.5)
1.0
julia> fld.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -2 -1 -1 -1 0 0 0 1 1 1
Because fld(x, y)
implements strictly correct floored rounding based on the true value of floating-point numbers, unintuitive situations can arise. For example:
julia> fld(6.0,0.1)
59.0
julia> 6.0/0.1
60.0
julia> 6.0/big(0.1)
59.99999999999999666933092612453056361837965690217069245739573412231113406246995
What is happening here is that the true value of the floating-point number written as 0.1
is slightly larger than the numerical value 1/10 while 6.0
represents the number 6 precisely. Therefore the true value of 6.0 / 0.1
is slightly less than 60. When doing division, this is rounded to precisely 60.0
, but fld(6.0, 0.1)
always takes the floor of the true value, so the result is 59.0
.
Base.cld — Function
cld(x, y)
Smallest integer larger than or equal to x/y
. Equivalent to div(x, y, RoundUp)
.
See also , fld.
Examples
julia> cld(5.5,2.2)
3.0
julia> cld.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-1 -1 -1 0 0 0 1 1 1 2 2
Base.mod — Function
mod(x::Integer, r::AbstractUnitRange)
Find y
in the range r
such that $x ≡ y (mod n)$, where n = length(r)
, i.e. y = mod(x - first(r), n) + first(r)
.
See also .
Examples
julia> mod(0, Base.OneTo(3)) # mod1(0, 3)
3
julia> mod(3, 0:2) # mod(3, 3)
0
Julia 1.3
This method requires at least Julia 1.3.
mod(x, y)
rem(x, y, RoundDown)
The reduction of x
modulo y
, or equivalently, the remainder of x
after floored division by y
, i.e. x - y*fld(x,y)
if computed without intermediate rounding.
The result will have the same sign as y
, and magnitude less than abs(y)
(with some exceptions, see note below).
Note
When used with floating point values, the exact result may not be representable by the type, and so rounding error may occur. In particular, if the exact result is very close to y
, then it may be rounded to y
.
julia> mod(8, 3)
2
julia> mod(9, 3)
0
julia> mod(8.9, 3)
2.9000000000000004
julia> mod(eps(), 3)
2.220446049250313e-16
julia> mod(-eps(), 3)
3.0
julia> mod.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 0 1 2 0 1 2 0 1 2
rem(x::Integer, T::Type{<:Integer}) -> T
mod(x::Integer, T::Type{<:Integer}) -> T
%(x::Integer, T::Type{<:Integer}) -> T
Find y::T
such that x
≡ y
(mod n), where n is the number of integers representable in T
, and y
is an integer in [typemin(T),typemax(T)]
. If T
can represent any integer (e.g. T == BigInt
), then this operation corresponds to a conversion to T
.
Examples
julia> 129 % Int8
-127
Base.rem — Function
rem(x, y)
%(x, y)
Remainder from Euclidean division, returning a value of the same sign as x
, and smaller in magnitude than y
. This value is always exact.
Examples
julia> x = 15; y = 4;
julia> x % y
3
julia> x == div(x, y) * y + rem(x, y)
true
julia> rem.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
-2 -1 0 -2 -1 0 1 2 0 1 2
Base.Math.rem2pi — Function
rem2pi(x, r::RoundingMode)
Compute the remainder of x
after integer division by 2π
, with the quotient rounded according to the rounding mode r
. In other words, the quantity
x - 2π*round(x/(2π),r)
without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a more accurate result than rem(x,2π,r)
if
r == RoundNearest
, then the result is in the interval $[-π, π]$. This will generally be the most accurate result. See also .if
r == RoundToZero
, then the result is in the interval $[0, 2π]$ ifx
is positive,. or $[-2π, 0]$ otherwise. See also RoundToZero.if
r == RoundDown
, then the result is in the interval $[0, 2π]$. See also .if
r == RoundUp
, then the result is in the interval $[-2π, 0]$. See also RoundUp.
Examples
julia> rem2pi(7pi/4, RoundNearest)
-0.7853981633974485
julia> rem2pi(7pi/4, RoundDown)
5.497787143782138
Base.Math.mod2pi — Function
mod2pi(x)
Modulus after division by 2π
, returning in the range $[0,2π)$.
This function computes a floating point representation of the modulus after division by numerically exact 2π
, and is therefore not exactly the same as mod(x,2π)
, which would compute the modulus of x
relative to division by the floating-point number 2π
.
Note
Depending on the format of the input value, the closest representable value to 2π may be less than 2π. For example, the expression mod2pi(2π)
will not return 0
, because the intermediate value of 2*π
is a Float64
and 2*Float64(π) < 2*big(π)
. See for more refined control of this behavior.
Examples
julia> mod2pi(9*pi/4)
0.7853981633974481
— Function
divrem(x, y, r::RoundingMode=RoundToZero)
The quotient and remainder from Euclidean division. Equivalent to (div(x,y,r), rem(x,y,r))
. Equivalently, with the default value of r
, this call is equivalent to (x÷y, x%y)
.
See also: fldmod, .
Examples
julia> divrem(3,7)
(0, 3)
julia> divrem(7,3)
(2, 1)
— Function
fldmod(x, y)
The floored quotient and modulus after division. A convenience wrapper for divrem(x, y, RoundDown)
. Equivalent to (fld(x,y), mod(x,y))
.
Base.fld1 — Function
fld1(x, y)
Flooring division, returning a value consistent with mod1(x,y)
See also , fldmod1.
Examples
julia> x = 15; y = 4;
julia> fld1(x, y)
4
julia> x == fld(x, y) * y + mod(x, y)
true
julia> x == (fld1(x, y) - 1) * y + mod1(x, y)
true
Base.mod1 — Function
mod1(x, y)
Modulus after flooring division, returning a value r
such that mod(r, y) == mod(x, y)
in the range $(0, y]$ for positive y
and in the range $[y,0)$ for negative y
.
With integer arguments and positive y
, this is equal to mod(x, 1:y)
, and hence natural for 1-based indexing. By comparison, mod(x, y) == mod(x, 0:y-1)
is natural for computations with offsets or strides.
See also , fld1, .
Examples
julia> mod1(4, 2)
2
julia> mod1.(-5:5, 3)'
1×11 adjoint(::Vector{Int64}) with eltype Int64:
1 2 3 1 2 3 1 2 3 1 2
julia> mod1.([-0.1, 0, 0.1, 1, 2, 2.9, 3, 3.1]', 3)
1×8 Matrix{Float64}:
2.9 3.0 0.1 1.0 2.0 2.9 3.0 0.1
— Function
fldmod1(x, y)
Return (fld1(x,y), mod1(x,y))
.
See also fld1, .
— Function
//(num, den)
Divide two integers or rational numbers, giving a Rational result.
Examples
julia> 3 // 5
3//5
julia> (3 // 5) // (2 // 1)
3//10
Base.rationalize — Function
rationalize([T<:Integer=Int,] x; tol::Real=eps(x))
Approximate floating point number x
as a number with components of the given integer type. The result will differ from x
by no more than tol
.
Examples
julia> rationalize(5.6)
28//5
julia> a = rationalize(BigInt, 10.3)
103//10
julia> typeof(numerator(a))
BigInt
— Function
numerator(x)
Numerator of the rational representation of x
.
Examples
julia> numerator(2//3)
2
julia> numerator(4)
4
— Function
denominator(x)
Denominator of the rational representation of x
.
Examples
julia> denominator(2//3)
3
julia> denominator(4)
1
— Function
<<(x, n)
Left bit shift operator, x << n
. For n >= 0
, the result is x
shifted left by n
bits, filling with 0
s. This is equivalent to x * 2^n
. For n < 0
, this is equivalent to x >> -n
.
Examples
julia> Int8(3) << 2
12
julia> bitstring(Int8(3))
"00000011"
julia> bitstring(Int8(12))
"00001100"
<<(B::BitVector, n) -> BitVector
Left bit shift operator, B << n
. For n >= 0
, the result is B
with elements shifted n
positions backwards, filling with false
values. If n < 0
, elements are shifted forwards. Equivalent to B >> -n
.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B << 1
5-element BitVector:
0
1
0
0
0
julia> B << -1
5-element BitVector:
0
1
0
1
0
Base.:>> — Function
>>(x, n)
Right bit shift operator, x >> n
. For n >= 0
, the result is x
shifted right by n
bits, where n >= 0
, filling with 0
s if x >= 0
, 1
s if x < 0
, preserving the sign of x
. This is equivalent to fld(x, 2^n)
. For n < 0
, this is equivalent to x << -n
.
Examples
julia> Int8(13) >> 2
3
julia> bitstring(Int8(13))
"00001101"
julia> bitstring(Int8(3))
"00000011"
julia> Int8(-14) >> 2
-4
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(-4))
"11111100"
See also , <<.
>>(B::BitVector, n) -> BitVector
Right bit shift operator, B >> n
. For n >= 0
, the result is B
with elements shifted n
positions forward, filling with false
values. If n < 0
, elements are shifted backwards. Equivalent to B << -n
.
Examples
julia> B = BitVector([true, false, true, false, false])
5-element BitVector:
1
0
1
0
0
julia> B >> 1
5-element BitVector:
0
1
0
1
0
julia> B >> -1
5-element BitVector:
0
1
0
0
0
— Function
>>>(x, n)
Unsigned right bit shift operator, x >>> n
. For n >= 0
, the result is x
shifted right by n
bits, where n >= 0
, filling with 0
s. For n < 0
, this is equivalent to x << -n
.
For Unsigned integer types, this is equivalent to . For Signed integer types, this is equivalent to signed(unsigned(x) >> n)
.
Examples
julia> Int8(-14) >>> 2
60
julia> bitstring(Int8(-14))
"11110010"
julia> bitstring(Int8(60))
"00111100"
s are treated as if having infinite size, so no filling is required and this is equivalent to >>.
See also , <<.
>>>(B::BitVector, n) -> BitVector
Unsigned right bitshift operator, B >>> n
. Equivalent to B >> n
. See >> for details and examples.
Base.bitrotate — Function
bitrotate(x::Base.BitInteger, k::Integer)
bitrotate(x, k)
implements bitwise rotation. It returns the value of x
with its bits rotated left k
times. A negative value of k
will rotate to the right instead.
Julia 1.5
This function requires Julia 1.5 or later.
See also: , circshift, .
julia> bitrotate(UInt8(114), 2)
0xc9
julia> bitstring(bitrotate(0b01110010, 2))
"11001001"
julia> bitstring(bitrotate(0b01110010, -2))
"10011100"
julia> bitstring(bitrotate(0b01110010, 8))
"01110010"
— Function
(:)(start::CartesianIndex, [step::CartesianIndex], stop::CartesianIndex)
Construct CartesianIndices from two CartesianIndex
and an optional step.
Julia 1.1
This method requires at least Julia 1.1.
Julia 1.6
The step range method start:step:stop requires at least Julia 1.6.
Examples
julia> I = CartesianIndex(2,1);
julia> J = CartesianIndex(3,3);
julia> I:J
CartesianIndices((2:3, 1:3))
julia> I:CartesianIndex(1, 2):J
CartesianIndices((2:1:3, 1:2:3))
(:)(start, [step], stop)
Range operator. a:b
constructs a range from a
to b
with a step size of 1 (a UnitRange) , and a:s:b
is similar but uses a step size of s
(a ).
:
is also used in indexing to select whole dimensions and for Symbol literals, as in e.g. :hello
.
Base.range — Function
range(start, stop, length)
range(start, stop; length, step)
range(start; length, stop, step)
range(;start, length, stop, step)
Construct a specialized array with evenly spaced elements and optimized storage (an ) from the arguments. Mathematically a range is uniquely determined by any three of start
, step
, stop
and length
. Valid invocations of range are:
- Call
range
with any three ofstart
,step
,stop
,length
. - Call
range
with two ofstart
,stop
,length
. In this casestep
will be assumed to be one. If both arguments are Integers, a UnitRange will be returned. - Call
range
with one ofstop
orlength
.start
andstep
will be assumed to be one.
See Extended Help for additional details on the returned type.
Examples
julia> range(1, length=100)
1:100
julia> range(1, stop=100)
1:100
julia> range(1, step=5, length=100)
1:5:496
julia> range(1, step=5, stop=100)
1:5:96
julia> range(1, 10, length=101)
1.0:0.09:10.0
julia> range(1, 100, step=5)
1:5:96
julia> range(stop=10, length=5)
6:10
julia> range(stop=10, step=1, length=5)
6:1:10
julia> range(start=1, step=1, stop=10)
1:1:10
julia> range(; length = 10)
Base.OneTo(10)
julia> range(; stop = 6)
Base.OneTo(6)
julia> range(; stop = 6.5)
1.0:1.0:6.0
If length
is not specified and stop - start
is not an integer multiple of step
, a range that ends before stop
will be produced.
julia> range(1, 3.5, step=2)
1.0:2.0:3.0
Special care is taken to ensure intermediate values are computed rationally. To avoid this induced overhead, see the constructor.
Julia 1.1
stop
as a positional argument requires at least Julia 1.1.
Julia 1.7
The versions without keyword arguments and start
as a keyword argument require at least Julia 1.7.
Julia 1.8
The versions with stop
as a sole keyword argument, or length
as a sole keyword argument require at least Julia 1.8.
Extended Help
range
will produce a Base.OneTo
when the arguments are Integers and
- Only
length
is provided - Only
stop
is provided
range
will produce a UnitRange
when the arguments are Integers and
- Only
start
andstop
are provided - Only
length
andstop
are provided
A UnitRange
is not produced if step
is provided even if specified as one.
— Type
Base.OneTo(n)
Define an AbstractUnitRange
that behaves like 1:n
, with the added distinction that the lower limit is guaranteed (by the type system) to be 1.
— Type
StepRangeLen( ref::R, step::S, len, [offset=1]) where { R,S}
StepRangeLen{T,R,S}( ref::R, step::S, len, [offset=1]) where {T,R,S}
StepRangeLen{T,R,S,L}(ref::R, step::S, len, [offset=1]) where {T,R,S,L}
A range r
where r[i]
produces values of type T
(in the first form, T
is deduced automatically), parameterized by a ref
erence value, a step
, and the len
gth. By default ref
is the starting value r[1]
, but alternatively you can supply it as the value of r[offset]
for some other index 1 <= offset <= len
. In conjunction with TwicePrecision
this can be used to implement ranges that are free of roundoff error.
— Function
==(x, y)
Generic equality operator. Falls back to \===. Should be implemented for all types with a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding. For collections, ==
is generally called recursively on all contents, though other properties (like the shape for arrays) may also be taken into account.
This operator follows IEEE semantics for floating-point numbers: 0.0 == -0.0
and NaN != NaN
.
The result is of type Bool
, except when one of the operands is , in which case missing
is returned (three-valued logic). For collections, missing
is returned if at least one of the operands contains a missing
value and all non-missing values are equal. Use or \=== to always get a Bool
result.
Implementation
New numeric types should implement this function for two arguments of the new type, and handle comparison to other types via promotion rules where possible.
falls back to ==
, so new methods of ==
will be used by the Dict type to compare keys. If your type will be used as a dictionary key, it should therefore also implement .
If some type defines ==
, isequal, and then it should also implement < to ensure consistency of comparisons.
Base.:!= — Function
!=(x, y)
≠(x,y)
Not-equals comparison operator. Always gives the opposite answer as .
Implementation
New types should generally not implement this, and rely on the fallback definition !=(x,y) = !(x==y)
instead.
Examples
julia> 3 != 2
true
false
!=(x)
Create a function that compares its argument to x
using , i.e. a function equivalent to y -> y != x
. The returned function is of type Base.Fix2{typeof(!=)}
, which can be used to implement specialized methods.
Julia 1.2
This functionality requires at least Julia 1.2.
— Function
!==(x, y)
≢(x,y)
Always gives the opposite answer as \===.
Examples
julia> a = [1, 2]; b = [1, 2];
julia> a ≢ b
true
julia> a ≢ a
false
Base.:< — Function
Less-than comparison operator. Falls back to . Because of the behavior of floating-point NaN values, this operator implements a partial order.
Implementation
New numeric types with a canonical partial order should implement this function for two arguments of the new type. Types with a canonical total order should implement isless instead.
Examples
julia> 'a' < 'b'
true
julia> "abc" < "abd"
true
julia> 5 < 3
false
<(x)
Create a function that compares its argument to x
using <, i.e. a function equivalent to y -> y < x
. The returned function is of type Base.Fix2{typeof(<)}
, which can be used to implement specialized methods.
Julia 1.2
This functionality requires at least Julia 1.2.
Base.:<= — Function
<=(x, y)
≤(x,y)
Less-than-or-equals comparison operator. Falls back to (x < y) | (x == y)
.
Examples
julia> 'a' <= 'b'
true
julia> 7 ≤ 7 ≤ 9
true
julia> "abc" ≤ "abc"
true
julia> 5 <= 3
false
<=(x)
Create a function that compares its argument to x
using <=, i.e. a function equivalent to y -> y <= x
. The returned function is of type Base.Fix2{typeof(<=)}
, which can be used to implement specialized methods.
Julia 1.2
This functionality requires at least Julia 1.2.
Base.:> — Function
>(x, y)
Greater-than comparison operator. Falls back to y < x
.
Implementation
Generally, new types should implement instead of this function, and rely on the fallback definition >(x, y) = y < x
.
Examples
julia> 'a' > 'b'
false
julia> 7 > 3 > 1
true
julia> "abc" > "abd"
false
julia> 5 > 3
true
>(x)
Create a function that compares its argument to x
using , i.e. a function equivalent to y -> y > x
. The returned function is of type Base.Fix2{typeof(>)}
, which can be used to implement specialized methods.
Julia 1.2
This functionality requires at least Julia 1.2.
— Function
>=(x, y)
≥(x,y)
Greater-than-or-equals comparison operator. Falls back to y <= x
.
Examples
julia> 'a' >= 'b'
false
julia> 7 ≥ 7 ≥ 3
true
julia> "abc" ≥ "abc"
true
julia> 5 >= 3
true
>=(x)
Create a function that compares its argument to x
using , i.e. a function equivalent to y -> y >= x
. The returned function is of type Base.Fix2{typeof(>=)}
, which can be used to implement specialized methods.
Julia 1.2
This functionality requires at least Julia 1.2.
— Function
cmp(x,y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. Uses the total order implemented by isless
.
Examples
julia> cmp(1, 2)
-1
julia> cmp(2, 1)
1
julia> cmp(2+im, 3-im)
ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})
[...]
cmp(<, x, y)
Return -1, 0, or 1 depending on whether x
is less than, equal to, or greater than y
, respectively. The first argument specifies a less-than comparison function to use.
cmp(a::AbstractString, b::AbstractString) -> Int
Compare two strings. Return 0
if both strings have the same length and the character at each index is the same in both strings. Return -1
if a
is a prefix of b
, or if a
comes before b
in alphabetical order. Return 1
if b
is a prefix of a
, or if b
comes before a
in alphabetical order (technically, lexicographical order by Unicode code points).
Examples
julia> cmp("abc", "abc")
0
julia> cmp("ab", "abc")
-1
julia> cmp("abc", "ab")
1
julia> cmp("ab", "ac")
-1
julia> cmp("ac", "ab")
1
julia> cmp("α", "a")
1
julia> cmp("b", "β")
-1
— Function
~(x)
Bitwise not.
Examples
julia> ~4
-5
julia> ~10
-11
julia> ~true
false
Base.:& — Function
x & y
Bitwise and. Implements , returning missing if one operand is missing
and the other is true
. Add parentheses for function application form: (&)(x, y)
.
See also: , xor, .
Examples
— Function
x | y
Bitwise or. Implements three-valued logic, returning if one operand is missing
and the other is false
.
Examples
julia> 4 | 10
14
julia> 4 | 1
5
julia> true | missing
true
julia> false | missing
missing
Base.xor — Function
xor(x, y)
⊻(x, y)
Bitwise exclusive or of x
and y
. Implements , returning missing if one of the arguments is missing
.
The infix operation a ⊻ b
is a synonym for xor(a,b)
, and ⊻
can be typed by tab-completing \xor
or \veebar
in the Julia REPL.
Examples
julia> xor(true, false)
true
julia> xor(true, true)
false
julia> xor(true, missing)
missing
julia> false ⊻ false
false
julia> [true; true; false] .⊻ [true; false; false]
3-element BitVector:
0
1
0
Base.nand — Function
nand(x, y)
⊼(x, y)
Bitwise nand (not and) of x
and y
. Implements , returning missing if one of the arguments is missing
.
The infix operation a ⊼ b
is a synonym for nand(a,b)
, and ⊼
can be typed by tab-completing \nand
or \barwedge
in the Julia REPL.
Examples
julia> nand(true, false)
true
julia> nand(true, true)
false
julia> nand(true, missing)
missing
julia> false ⊼ false
true
julia> [true; true; false] .⊼ [true; false; false]
3-element BitVector:
0
1
1
Base.nor — Function
nor(x, y)
⊽(x, y)
The infix operation a ⊽ b
is a synonym for nor(a,b)
, and ⊽
can be typed by tab-completing \nor
or \barvee
in the Julia REPL.
Examples
julia> nor(true, false)
false
julia> nor(true, true)
false
julia> nor(true, missing)
false
julia> false ⊽ false
true
julia> [true; true; false] .⊽ [true; false; false]
3-element BitVector:
0
0
1
Base.:! — Function
!(x)
Boolean not. Implements , returning missing if x
is missing
.
See also for bitwise not.
Examples
julia> !true
false
julia> !false
true
julia> !missing
missing
julia> .![true false true]
1×3 BitMatrix:
0 1 0
!f::Function
Predicate function negation: when the argument of !
is a function, it returns a function which computes the boolean negation of f
.
See also .
Examples
julia> str = "∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
"∀ ε > 0, ∃ δ > 0: |x-y| < δ ⇒ |f(x)-f(y)| < ε"
julia> filter(isletter, str)
"εδxyδfxfyε"
julia> filter(!isletter, str)
"∀ > 0, ∃ > 0: |-| < ⇒ |()-()| < "
— Keyword
x && y
Short-circuiting boolean AND.
See also &, the ternary operator ? :
, and the manual section on .
Examples
julia> x = 3;
julia> x > 1 && x < 10 && x isa Int
true
julia> x < 0 && error("expected positive x")
false
— Keyword
x || y
Short-circuiting boolean OR.
Examples
julia> pi < 3 || ℯ < 3
true
julia> false || true || println("neither is true!")
true
— Function
isapprox(x, y; atol::Real=0, rtol::Real=atol>0 ? 0 : √eps, nans::Bool=false[, norm::Function])
Inexact equality comparison. Two numbers compare equal if their relative distance or their absolute distance is within tolerance bounds: isapprox
returns true
if norm(x-y) <= max(atol, rtol*max(norm(x), norm(y)))
. The default atol
is zero and the default rtol
depends on the types of x
and y
. The keyword argument nans
determines whether or not NaN values are considered equal (defaults to false).
For real or complex floating-point values, if an atol > 0
is not specified, rtol
defaults to the square root of eps of the type of x
or y
, whichever is bigger (least precise). This corresponds to requiring equality of about half of the significant digits. Otherwise, e.g. for integer arguments or if an atol > 0
is supplied, rtol
defaults to zero.
The norm
keyword defaults to abs
for numeric (x,y)
and to LinearAlgebra.norm
for arrays (where an alternative norm
choice is sometimes useful). When x
and y
are arrays, if norm(x-y)
is not finite (i.e. ±Inf
or NaN
), the comparison falls back to checking whether all elements of x
and y
are approximately equal component-wise.
The binary operator ≈
is equivalent to isapprox
with the default arguments, and x ≉ y
is equivalent to !isapprox(x,y)
.
Note that x ≈ 0
(i.e., comparing to zero with the default tolerances) is equivalent to x == 0
since the default atol
is 0
. In such cases, you should either supply an appropriate atol
(or use norm(x) ≤ atol
) or rearrange your code (e.g. use x ≈ y
rather than x - y ≈ 0
). It is not possible to pick a nonzero atol
automatically because it depends on the overall scaling (the “units”) of your problem: for example, in x - y ≈ 0
, atol=1e-9
is an absurdly small tolerance if x
is the in meters, but an absurdly large tolerance if x
is the radius of a Hydrogen atom in meters.
Julia 1.6
Passing the norm
keyword argument when comparing numeric (non-array) arguments requires Julia 1.6 or later.
Examples
julia> isapprox(0.1, 0.15; atol=0.05)
true
julia> isapprox(0.1, 0.15; rtol=0.34)
true
julia> isapprox(0.1, 0.15; rtol=0.33)
false
julia> 0.1 + 1e-10 ≈ 0.1
true
julia> 1e-10 ≈ 0
false
julia> isapprox(1e-10, 0, atol=1e-8)
true
julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0]) # using `norm`
true
isapprox(x; kwargs...) / ≈(x; kwargs...)
Create a function that compares its argument to x
using ≈
, i.e. a function equivalent to y -> y ≈ x
.
The keyword arguments supported here are the same as those in the 2-argument isapprox
.
Julia 1.5
This method requires Julia 1.5 or later.
— Method
sin(x)
Compute sine of x
, where x
is in radians.
See also [sind
], [sinpi
], [sincos
], [cis
].
— Method
cos(x)
Compute cosine of x
, where x
is in radians.
See also [cosd
], [cospi
], [sincos
], [cis
].
— Method
sincos(x)
Simultaneously compute the sine and cosine of x
, where x
is in radians, returning a tuple (sine, cosine)
.
Base.tan — Method
tan(x)
Compute tangent of x
, where x
is in radians.
Base.Math.sind — Function
sind(x)
Compute sine of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
Base.Math.cosd — Function
cosd(x)
Compute cosine of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
Base.Math.tand — Function
tand(x)
Compute tangent of x
, where x
is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
Base.Math.sincosd — Function
sincosd(x)
Simultaneously compute the sine and cosine of x
, where x
is in degrees.
Julia 1.3
This function requires at least Julia 1.3.
Base.Math.sinpi — Function
sinpi(x)
Compute $\sin(\pi x)$ more accurately than sin(pi*x)
, especially for large x
.
See also , cospi, .
— Function
cospi(x)
Compute $\cos(\pi x)$ more accurately than cos(pi*x)
, especially for large x
.
— Function
sincospi(x)
Simultaneously compute sinpi(x) and (the sine and cosine of π*x
, where x
is in radians), returning a tuple (sine, cosine)
.
Julia 1.6
This function requires Julia 1.6 or later.
Base.sinh — Method
sinh(x)
Compute hyperbolic sine of x
.
Base.cosh — Method
cosh(x)
Compute hyperbolic cosine of x
.
Base.tanh — Method
tanh(x)
Compute hyperbolic tangent of x
.
Base.asin — Method
asin(x)
Compute the inverse sine of x
, where the output is in radians.
Base.acos — Method
acos(x)
Compute the inverse cosine of x
, where the output is in radians
Base.atan — Method
atan(y)
atan(y, x)
Compute the inverse tangent of y
or y/x
, respectively.
For one argument, this is the angle in radians between the positive x-axis and the point (1, y), returning a value in the interval $[-\pi/2, \pi/2]$.
For two arguments, this is the angle in radians between the positive x-axis and the point (x, y), returning a value in the interval $[-\pi, \pi]$. This corresponds to a standard function. Note that by convention atan(0.0,x)
is defined as $\pi$ and atan(-0.0,x)
is defined as $-\pi$ when x < 0
.
— Function
asind(x)
Compute the inverse sine of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
— Function
acosd(x)
Compute the inverse cosine of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
— Function
atand(y)
atand(y,x)
Compute the inverse tangent of y
or y/x
, respectively, where the output is in degrees.
Julia 1.7
The one-argument method supports square matrix arguments as of Julia 1.7.
— Method
sec(x)
Compute the secant of x
, where x
is in radians.
— Method
csc(x)
Compute the cosecant of x
, where x
is in radians.
— Method
cot(x)
Compute the cotangent of x
, where x
is in radians.
— Function
secd(x)
Compute the secant of x
, where x
is in degrees.
— Function
cscd(x)
Compute the cosecant of x
, where x
is in degrees.
— Function
cotd(x)
Compute the cotangent of x
, where x
is in degrees.
— Method
asec(x)
Compute the inverse secant of x
, where the output is in radians.
— Method
acsc(x)
Compute the inverse cosecant of x
, where the output is in radians.
— Method
acot(x)
Compute the inverse cotangent of x
, where the output is in radians.
— Function
asecd(x)
Compute the inverse secant of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
— Function
acscd(x)
Compute the inverse cosecant of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
— Function
acotd(x)
Compute the inverse cotangent of x
, where the output is in degrees. If x
is a matrix, x
needs to be a square matrix.
Julia 1.7
Matrix arguments require Julia 1.7 or later.
— Method
sech(x)
Compute the hyperbolic secant of x
.
— Method
csch(x)
Compute the hyperbolic cosecant of x
.
— Method
coth(x)
Compute the hyperbolic cotangent of x
.
— Method
asinh(x)
Compute the inverse hyperbolic sine of x
.
— Method
acosh(x)
Compute the inverse hyperbolic cosine of x
.
— Method
atanh(x)
Compute the inverse hyperbolic tangent of x
.
— Method
asech(x)
Compute the inverse hyperbolic secant of x
.
— Method
acsch(x)
Compute the inverse hyperbolic cosecant of x
.
— Method
acoth(x)
Compute the inverse hyperbolic cotangent of x
.
— Function
sinc(x)
Compute $\sin(\pi x) / (\pi x)$ if $x \neq 0$, and $1$ if $x = 0$.
See also cosc, its derivative.
Base.Math.cosc — Function
cosc(x)
Compute $\cos(\pi x) / x - \sin(\pi x) / (\pi x^2)$ if $x \neq 0$, and $0$ if $x = 0$. This is the derivative of sinc(x)
.
Base.Math.deg2rad — Function
deg2rad(x)
Convert x
from degrees to radians.
See also: , sind.
Examples
julia> deg2rad(90)
1.5707963267948966
Base.Math.rad2deg — Function
rad2deg(x)
Convert x
from radians to degrees.
Examples
julia> rad2deg(pi)
180.0
Base.Math.hypot — Function
hypot(x, y)
Compute the hypotenuse $\sqrt{|x|^2+|y|^2}$ avoiding overflow and underflow.
This code is an implementation of the algorithm described in: An Improved Algorithm for hypot(a,b)
by Carlos F. Borges The article is available online at ArXiv at the link
hypot(x...)
Compute the hypotenuse $\sqrt{\sum |x_i|^2}$ avoiding overflow and underflow.
See also norm
in the LinearAlgebra standard library.
Examples
julia> a = Int64(10)^10;
julia> hypot(a, a)
1.4142135623730951e10
julia> √(a^2 + a^2) # a^2 overflows
ERROR: DomainError with -2.914184810805068e18:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> hypot(3, 4im)
5.0
julia> hypot(-5.7)
5.7
julia> hypot(3, 4im, 12.0)
13.0
julia> using LinearAlgebra
julia> norm([a, a, a, a]) == hypot(a, a, a, a)
true
Base.log — Method
log(x)
Compute the natural logarithm of x
. Throws for negative Real arguments. Use complex negative arguments to obtain complex results.
See also [log1p
], [log2
], [log10
].
Examples
julia> log(2)
0.6931471805599453
julia> log(-3)
ERROR: DomainError with -3.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
Base.log — Method
log(b,x)
Compute the base b
logarithm of x
. Throws for negative Real arguments.
Examples
julia> log(4,8)
1.5
julia> log(4,2)
0.5
julia> log(-2, 3)
ERROR: DomainError with -2.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
julia> log(2, -3)
ERROR: DomainError with -3.0:
log will only return a complex result if called with a complex argument. Try log(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
Note
If b
is a power of 2 or 10, or log10 should be used, as these will typically be faster and more accurate. For example,
julia> log(100,1000000)
2.9999999999999996
julia> log10(1000000)/2
3.0
Base.log2 — Function
log2(x)
Compute the logarithm of x
to base 2. Throws for negative Real arguments.
See also: , ldexp, .
Examples
julia> log2(4)
2.0
julia> log2(10)
3.321928094887362
julia> log2(-2)
ERROR: DomainError with -2.0:
log2 will only return a complex result if called with a complex argument. Try log2(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]
— Function
log10(x)
Compute the logarithm of x
to base 10. Throws DomainError for negative arguments.
Examples
julia> log10(100)
2.0
julia> log10(2)
0.3010299956639812
julia> log10(-2)
ERROR: DomainError with -2.0:
log10 will only return a complex result if called with a complex argument. Try log10(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(f::Symbol, x::Float64) at ./math.jl:31
[...]
— Function
log1p(x)
Accurate natural logarithm of 1+x
. Throws DomainError for arguments less than -1.
Examples
julia> log1p(-0.5)
-0.6931471805599453
julia> log1p(0)
0.0
julia> log1p(-2)
ERROR: DomainError with -2.0:
log1p will only return a complex result if called with a complex argument. Try log1p(Complex(x)).
Stacktrace:
[1] throw_complex_domainerror(::Symbol, ::Float64) at ./math.jl:31
[...]
— Function
frexp(val)
Return (x,exp)
such that x
has a magnitude in the interval $[1/2, 1)$ or 0, and val
is equal to $x \times 2^{exp}$.
Examples
julia> frexp(12.8)
(0.8, 4)
— Method
exp(x)
Compute the natural base exponential of x
, in other words $ℯ^x$.
Examples
julia> exp(1.0)
2.718281828459045
julia> exp(im * pi) ≈ cis(pi)
true
Base.exp2 — Function
exp2(x)
Compute the base 2 exponential of x
, in other words $2^x$.
See also , <<.
Examples
julia> exp2(5)
32.0
julia> 2^5
32
julia> exp2(63) > typemax(Int)
true
Base.exp10 — Function
exp10(x)
Compute the base 10 exponential of x
, in other words $10^x$.
Examples
julia> exp10(2)
100.0
julia> 10^2
100
Base.Math.ldexp — Function
ldexp(x, n)
Compute $x \times 2^n$.
Examples
julia> ldexp(5., 2)
20.0
Base.Math.modf — Function
modf(x)
Return a tuple (fpart, ipart)
of the fractional and integral parts of a number. Both parts have the same sign as the argument.
Examples
julia> modf(3.5)
(0.5, 3.0)
julia> modf(-3.5)
(-0.5, -3.0)
Base.expm1 — Function
expm1(x)
Accurately compute $e^x-1$. It avoids the loss of precision involved in the direct evaluation of exp(x)-1 for small values of x.
Examples
julia> expm1(1e-16)
1.0e-16
julia> exp(1e-16) - 1
0.0
Base.round — Method
round([T,] x, [r::RoundingMode])
round(x, [r::RoundingMode]; digits::Integer=0, base = 10)
round(x, [r::RoundingMode]; sigdigits::Integer, base = 10)
Rounds the number x
.
Without keyword arguments, x
is rounded to an integer value, returning a value of type T
, or of the same type of x
if no T
is provided. An will be thrown if the value is not representable by T
, similar to convert.
If the keyword argument is provided, it rounds to the specified number of digits after the decimal place (or before if negative), in base base
.
If the sigdigits
keyword argument is provided, it rounds to the specified number of significant digits, in base base
.
The r
controls the direction of the rounding; the default is RoundNearest, which rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer. Note that round
may give incorrect results if the global rounding mode is changed (see ).
Examples
julia> round(1.7)
2.0
julia> round(Int, 1.7)
2
julia> round(1.5)
2.0
julia> round(2.5)
2.0
julia> round(pi; digits=2)
3.14
julia> round(pi; digits=3, base=2)
3.125
julia> round(123.456; sigdigits=2)
120.0
julia> round(357.913; sigdigits=4, base=2)
352.0
Note
Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating point numbers. For example, the Float64 value represented by 1.15
is actually less than 1.15, yet will be rounded to 1.2. For example:
julia> x = 1.15
1.15
"1.14999999999999991118"
julia> x < 115//100
true
julia> round(x, digits=1)
1.2
Extensions
To extend round
to new numeric types, it is typically sufficient to define Base.round(x::NewType, r::RoundingMode)
.
Base.Rounding.RoundingMode — Type
RoundingMode
A type used for controlling the rounding mode of floating point operations (via /setrounding functions), or as optional arguments for rounding to the nearest integer (via the function).
Currently supported rounding modes are:
- RoundNearest (default)
- RoundNearestTiesUp
- RoundFromZero ( only)
- RoundUp
— Constant
RoundNearest
The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the nearest even integer.
— Constant
RoundNearestTiesAway
Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).
Base.Rounding.RoundNearestTiesUp — Constant
RoundNearestTiesUp
Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript behaviour).
— Constant
RoundToZero
round using this rounding mode is an alias for .
— Constant
RoundFromZero
Rounds away from zero. This rounding mode may only be used with T == BigFloat
inputs to round.
Examples
julia> BigFloat("1.0000000000000001", 5, RoundFromZero)
1.06
Base.Rounding.RoundUp — Constant
RoundUp
using this rounding mode is an alias for ceil.
Base.Rounding.RoundDown — Constant
RoundDown
using this rounding mode is an alias for floor.
Return the nearest integral value of the same type as the complex-valued z
to z
, breaking ties using the specified RoundingModes. The first is used for rounding the real components while the second is used for rounding the imaginary components.
Example
julia> round(3.14 + 4.5im)
3.0 + 4.0im
— Function
ceil([T,] x)
ceil(x; digits::Integer= [, base = 10])
ceil(x; sigdigits::Integer= [, base = 10])
ceil(x)
returns the nearest integral value of the same type as x
that is greater than or equal to x
.
ceil(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
Keywords digits
, sigdigits
and base
work as for round.
Base.floor — Function
floor([T,] x)
floor(x; digits::Integer= [, base = 10])
floor(x; sigdigits::Integer= [, base = 10])
floor(x)
returns the nearest integral value of the same type as x
that is less than or equal to x
.
floor(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
Keywords digits
, sigdigits
and base
work as for .
— Function
trunc([T,] x)
trunc(x; digits::Integer= [, base = 10])
trunc(x; sigdigits::Integer= [, base = 10])
trunc(x)
returns the nearest integral value of the same type as x
whose absolute value is less than or equal to the absolute value of x
.
trunc(T, x)
converts the result to type T
, throwing an InexactError
if the value is not representable.
Keywords digits
, sigdigits
and base
work as for round.
See also: , floor, , unsafe_trunc.
Examples
julia> trunc(2.22)
2.0
julia> trunc(-2.22, digits=1)
-2.2
julia> trunc(Int, -2.22)
-2
Base.unsafe_trunc — Function
unsafe_trunc(T, x)
Return the nearest integral value of type T
whose absolute value is less than or equal to the absolute value of x
. If the value is not representable by T
, an arbitrary value will be returned. See also .
Examples
julia> unsafe_trunc(Int, -2.2)
-2
julia> unsafe_trunc(Int, NaN)
-9223372036854775808
— Function
min(x, y, ...)
Return the minimum of the arguments (with respect to isless). See also the function to take the minimum element from a collection.
Examples
julia> min(2, 5, 1)
1
— Function
max(x, y, ...)
Return the maximum of the arguments (with respect to isless). See also the function to take the maximum element from a collection.
Examples
julia> max(2, 5, 1)
5
— Function
minmax(x, y)
Return (min(x,y), max(x,y))
.
See also extrema that returns (minimum(x), maximum(x))
.
Examples
julia> minmax('c','b')
('b', 'c')
Base.Math.clamp — Function
clamp(x, lo, hi)
Return x
if lo <= x <= hi
. If x > hi
, return hi
. If x < lo
, return lo
. Arguments are promoted to a common type.
See also , min, .
Julia 1.3
missing
as the first argument requires at least Julia 1.3.
Examples
julia> clamp.([pi, 1.0, big(10)], 2.0, 9.0)
3-element Vector{BigFloat}:
3.141592653589793238462643383279502884197169399375105820974944592307816406286198
2.0
9.0
julia> clamp.([11, 8, 5], 10, 6) # an example where lo > hi
3-element Vector{Int64}:
6
6
10
clamp(x, T)::T
Clamp x
between typemin(T)
and typemax(T)
and convert the result to type T
.
See also .
Examples
julia> clamp(200, Int8)
127
julia> clamp(-200, Int8)
-128
julia> trunc(Int, 4pi^2)
39
clamp(x::Integer, r::AbstractUnitRange)
Clamp x
to lie within range r
.
Julia 1.6
This method requires at least Julia 1.6.
Base.Math.clamp! — Function
clamp!(array::AbstractArray, lo, hi)
Restrict values in array
to the specified range, in-place. See also .
Julia 1.3
missing
entries in array
require at least Julia 1.3.
Examples
julia> row = collect(-4:4)';
julia> clamp!(row, 0, Inf)
1×9 adjoint(::Vector{Int64}) with eltype Int64:
0 0 0 0 0 1 2 3 4
julia> clamp.((-4:4)', 0, Inf)
1×9 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0
— Function
abs(x)
The absolute value of x
.
When abs
is applied to signed integers, overflow may occur, resulting in the return of a negative value. This overflow occurs only when abs
is applied to the minimum representable value of a signed integer. That is, when x == typemin(typeof(x))
, abs(x) == x < 0
, not -x
as might be expected.
Examples
julia> abs(-3)
3
julia> abs(1 + im)
1.4142135623730951
julia> abs(typemin(Int64))
-9223372036854775808
Base.Checked.checked_abs — Function
Base.checked_abs(x)
Calculates abs(x)
, checking for overflow errors where applicable. For example, standard two’s complement signed integers (e.g. Int
) cannot represent abs(typemin(Int))
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_neg — Function
Base.checked_neg(x)
Calculates -x
, checking for overflow errors where applicable. For example, standard two’s complement signed integers (e.g. Int
) cannot represent -typemin(Int)
, thus leading to an overflow.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_add — Function
Base.checked_add(x, y)
Calculates x+y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_sub — Function
Base.checked_sub(x, y)
Calculates x-y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mul — Function
Base.checked_mul(x, y)
Calculates x*y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_div — Function
Base.checked_div(x, y)
Calculates div(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_rem — Function
Base.checked_rem(x, y)
Calculates x%y
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_fld — Function
Base.checked_fld(x, y)
Calculates fld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_mod — Function
Base.checked_mod(x, y)
Calculates mod(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.checked_cld — Function
Base.checked_cld(x, y)
Calculates cld(x,y)
, checking for overflow errors where applicable.
The overflow protection may impose a perceptible performance penalty.
Base.Checked.add_with_overflow — Function
Base.add_with_overflow(x, y) -> (r, f)
Calculates r = x+y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.sub_with_overflow — Function
Base.sub_with_overflow(x, y) -> (r, f)
Calculates r = x-y
, with the flag f
indicating whether overflow has occurred.
Base.Checked.mul_with_overflow — Function
Base.mul_with_overflow(x, y) -> (r, f)
Calculates r = x*y
, with the flag f
indicating whether overflow has occurred.
Base.abs2 — Function
abs2(x)
Squared absolute value of x
.
Examples
julia> abs2(-3)
9
Base.copysign — Function
copysign(x, y) -> z
Return z
which has the magnitude of x
and the same sign as y
.
Examples
julia> copysign(1, -2)
-1
julia> copysign(-1, 2)
1
Base.sign — Function
sign(x)
Return zero if x==0
and $x/|x|$ otherwise (i.e., ±1 for real x
).
Examples
julia> sign(-4.0)
-1.0
julia> sign(99)
1
julia> sign(-0.0)
-0.0
julia> sign(0 + im)
0.0 + 1.0im
Base.signbit — Function
signbit(x)
Returns true
if the value of the sign of x
is negative, otherwise false
.
See also and copysign.
Examples
julia> signbit(-4)
true
julia> signbit(5)
false
julia> signbit(5.5)
false
julia> signbit(-4.1)
true
Base.flipsign — Function
flipsign(x, y)
Return x
with its sign flipped if y
is negative. For example abs(x) = flipsign(x,x)
.
Examples
julia> flipsign(5, 3)
5
julia> flipsign(5, -3)
-5
Base.sqrt — Method
sqrt(x)
Return $\sqrt{x}$. Throws for negative Real arguments. Use complex negative arguments instead. The prefix operator √
is equivalent to sqrt
.
See also: .
Examples
julia> sqrt(big(81))
9.0
julia> sqrt(big(-81))
ERROR: DomainError with -81.0:
NaN result for non-NaN input.
Stacktrace:
[1] sqrt(::BigFloat) at ./mpfr.jl:501
[...]
julia> sqrt(big(complex(-81)))
0.0 + 9.0im
julia> .√(1:4)
4-element Vector{Float64}:
1.0
1.4142135623730951
1.7320508075688772
2.0
— Function
isqrt(n::Integer)
Integer square root: the largest integer m
such that m*m <= n
.
julia> isqrt(5)
2
— Function
cbrt(x::Real)
Return the cube root of x
, i.e. $x^{1/3}$. Negative values are accepted (returning the negative real root when $x < 0$).
The prefix operator ∛
is equivalent to cbrt
.
Examples
julia> cbrt(big(27))
3.0
julia> cbrt(big(-27))
-3.0
— Function
real(z)
Return the real part of the complex number z
.
See also: imag, , complex, , Real.
Examples
julia> real(1 + 3im)
1
real(T::Type)
Return the type that represents the real part of a value of type T
. e.g: for T == Complex{R}
, returns R
. Equivalent to typeof(real(zero(T)))
.
Examples
julia> real(Complex{Int})
Int64
julia> real(Float64)
Float64
real(A::AbstractArray)
Return an array containing the real part of each entry in array A
.
Equivalent to real.(A)
, except that when eltype(A) <: Real
A
is returned without copying, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> real([1, 2im, 3 + 4im])
3-element Vector{Int64}:
1
0
3
julia> real(fill(2 - im))
0-dimensional Array{Int64, 0}:
2
Base.imag — Function
imag(z)
Return the imaginary part of the complex number z
.
Examples
julia> imag(1 + 3im)
3
imag(A::AbstractArray)
Return an array containing the imaginary part of each entry in array A
.
Equivalent to imag.(A)
, except that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> imag([1, 2im, 3 + 4im])
3-element Vector{Int64}:
0
2
4
julia> imag(fill(2 - im))
0-dimensional Array{Int64, 0}:
-1
— Function
reim(z)
Return a tuple of the real and imaginary parts of the complex number z
.
Examples
julia> reim(1 + 3im)
(1, 3)
reim(A::AbstractArray)
Return a tuple of two arrays containing respectively the real and the imaginary part of each entry in A
.
Equivalent to (real.(A), imag.(A))
, except that when eltype(A) <: Real
A
is returned without copying to represent the real part, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> reim([1, 2im, 3 + 4im])
([1, 0, 3], [0, 2, 4])
julia> reim(fill(2 - im))
(fill(2), fill(-1))
Base.conj — Function
conj(z)
Compute the complex conjugate of a complex number z
.
See also: , adjoint.
Examples
julia> conj(1 + 3im)
1 - 3im
conj(A::AbstractArray)
Return an array containing the complex conjugate of each entry in array A
.
Equivalent to conj.(A)
, except that when eltype(A) <: Real
A
is returned without copying, and that when A
has zero dimensions, a 0-dimensional array is returned (rather than a scalar).
Examples
julia> conj([1, 2im, 3 + 4im])
3-element Vector{Complex{Int64}}:
1 + 0im
0 - 2im
3 - 4im
julia> conj(fill(2 - im))
0-dimensional Array{Complex{Int64}, 0}:
2 + 1im
— Function
angle(z)
Compute the phase angle in radians of a complex number z
.
See also: atan, .
Examples
julia> rad2deg(angle(1 + im))
45.0
julia> rad2deg(angle(1 - im))
-45.0
julia> rad2deg(angle(-1 - im))
-135.0
— Function
cis(x)
More efficient method for exp(im*x)
by using Euler’s formula: $cos(x) + i sin(x) = \exp(i x)$.
Examples
julia> cis(π) ≈ -1
true
— Function
cispi(x)
More accurate method for cis(pi*x)
(especially for large x
).
Examples
julia> cispi(10000)
1.0 + 0.0im
julia> cispi(0.25 + 1im)
0.030556854645952924 + 0.030556854645952924im
Julia 1.6
This function requires Julia 1.6 or later.
— Function
binomial(n::Integer, k::Integer)
The binomial coefficient $\binom{n}{k}$, being the coefficient of the $k$th term in the polynomial expansion of $(1+x)^n$.
If $n$ is non-negative, then it is the number of ways to choose k
out of n
items:
\[\binom{n}{k} = \frac{n!}{k! (n-k)!}\]
where $n!$ is the factorial function.
If $n$ is negative, then it is defined in terms of the identity
\[\binom{n}{k} = (-1)^k \binom{k-n-1}{k}\]
See also .
Examples
julia> binomial(5, 3)
10
julia> factorial(5) ÷ (factorial(5-3) * factorial(3))
10
julia> binomial(-5, 3)
-35
External links
- Binomial coefficient on Wikipedia.
Base.factorial — Function
factorial(n::Integer)
Factorial of n
. If n
is an , the factorial is computed as an integer (promoted to at least 64 bits). Note that this may overflow if n
is not small, but you can use factorial(big(n))
to compute the result exactly in arbitrary precision.
See also binomial.
Examples
julia> factorial(6)
720
julia> factorial(21)
ERROR: OverflowError: 21 is too large to look up in the table; consider using `factorial(big(21))` instead
Stacktrace:
[...]
julia> factorial(big(21))
51090942171709440000
External links
- on Wikipedia.
— Function
gcd(x, y...)
Greatest common (positive) divisor (or zero if all arguments are zero). The arguments may be integer and rational numbers.
Julia 1.4
Rational arguments require Julia 1.4 or later.
Examples
julia> gcd(6, 9)
3
julia> gcd(6, -9)
3
julia> gcd(6, 0)
6
julia> gcd(0, 0)
0
julia> gcd(1//3, 2//3)
1//3
julia> gcd(1//3, -2//3)
1//3
julia> gcd(1//3, 2)
1//3
julia> gcd(0, 0, 10, 15)
5
— Function
lcm(x, y...)
Least common (positive) multiple (or zero if any argument is zero). The arguments may be integer and rational numbers.
Julia 1.4
Rational arguments require Julia 1.4 or later.
Examples
julia> lcm(2, 3)
6
julia> lcm(-2, 3)
6
julia> lcm(0, 3)
0
julia> lcm(0, 0)
0
julia> lcm(1//3, 2//3)
2//3
julia> lcm(1//3, -2//3)
2//3
julia> lcm(1//3, 2)
2//1
julia> lcm(1, 3, 5, 7)
105
— Function
gcdx(a, b)
Computes the greatest common (positive) divisor of a
and b
and their Bézout coefficients, i.e. the integer coefficients u
and v
that satisfy $ua+vb = d = gcd(a, b)$. $gcdx(a, b)$ returns $(d, u, v)$.
The arguments may be integer and rational numbers.
Julia 1.4
Rational arguments require Julia 1.4 or later.
Examples
julia> gcdx(12, 42)
(6, -3, 1)
julia> gcdx(240, 46)
(2, -9, 47)
Note
Bézout coefficients are not uniquely defined. gcdx
returns the minimal Bézout coefficients that are computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.) For signed integers, these coefficients u
and v
are minimal in the sense that $|u| < |y/d|$ and $|v| < |x/d|$. Furthermore, the signs of u
and v
are chosen so that d
is positive. For unsigned integers, the coefficients u
and v
might be near their typemax
, and the identity then holds only via the unsigned integers’ modulo arithmetic.
— Function
ispow2(n::Number) -> Bool
Test whether n
is an integer power of two.
See also count_ones, , nextpow.
Examples
julia> ispow2(4)
true
julia> ispow2(5)
false
julia> ispow2(4.5)
false
julia> ispow2(0.25)
true
julia> ispow2(1//8)
true
Julia 1.6
Support for non-Integer
arguments was added in Julia 1.6.
Base.nextpow — Function
nextpow(a, x)
The smallest a^n
not less than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must be greater than 0.
See also .
Examples
julia> nextpow(2, 7)
8
julia> nextpow(2, 9)
16
julia> nextpow(5, 20)
25
julia> nextpow(4, 16)
16
— Function
prevpow(a, x)
The largest a^n
not greater than x
, where n
is a non-negative integer. a
must be greater than 1, and x
must not be less than 1.
See also nextpow, .
Examples
julia> prevpow(2, 7)
4
julia> prevpow(2, 9)
8
julia> prevpow(5, 20)
5
julia> prevpow(4, 16)
16
— Function
nextprod(factors::Union{Tuple,AbstractVector}, n)
Next integer greater than or equal to n
that can be written as $\prod k_i^{p_i}$ for integers $p_1$, $p_2$, etcetera, for factors $k_i$ in factors
.
Examples
julia> nextprod((2, 3), 105)
108
julia> 2^2 * 3^3
108
Julia 1.6
The method that accepts a tuple requires Julia 1.6 or later.
— Function
invmod(n, m)
Take the inverse of n
modulo m
: y
such that $n y = 1 \pmod m$, and $div(y,m) = 0$. This will throw an error if $m = 0$, or if $gcd(n,m) \neq 1$.
Examples
julia> invmod(2, 5)
3
julia> invmod(2, 3)
2
julia> invmod(5, 6)
5
— Function
powermod(x::Integer, p::Integer, m)
Compute $x^p \pmod m$.
Examples
julia> powermod(2, 6, 5)
4
julia> mod(2^6, 5)
4
julia> powermod(5, 2, 20)
5
julia> powermod(5, 2, 19)
6
julia> powermod(5, 3, 19)
11
— Function
ndigits(n::Integer; base::Integer=10, pad::Integer=1)
Compute the number of digits in integer n
written in base base
(base
must not be in [-1, 0, 1]
), optionally padded with zeros to a specified size (the result will never be less than pad
).
See also digits, .
Examples
julia> ndigits(12345)
5
julia> ndigits(1022, base=16)
3
julia> string(1022, base=16)
"3fe"
julia> ndigits(123, pad=5)
5
julia> ndigits(-123)
3
— Function
Base.add_sum(x, y)
The reduction operator used in sum
. The main difference from + is that small integers are promoted to Int
/UInt
.
Base.widemul — Function
widemul(x, y)
Multiply x
and y
, giving the result as a larger type.
See also , Base.add_sum.
Examples
julia> widemul(Float32(3.0), 4.0) isa BigFloat
true
julia> typemax(Int8) * typemax(Int8)
1
julia> widemul(typemax(Int8), typemax(Int8)) # == 127^2
16129
Base.Math.evalpoly — Function
evalpoly(x, p)
Evaluate the polynomial $\sum_k x^{k-1} p[k]$ for the coefficients p[1]
, p[2]
, …; that is, the coefficients are given in ascending order by power of x
. Loops are unrolled at compile time if the number of coefficients is statically known, i.e. when p
is a Tuple
. This function generates efficient code using Horner’s method if x
is real, or using a Goertzel-like algorithm if x
is complex.
Julia 1.4
This function requires Julia 1.4 or later.
Example
julia> evalpoly(2, (1, 2, 3))
17
— Macro
@evalpoly(z, c...)
Evaluate the polynomial $\sum_k z^{k-1} c[k]$ for the coefficients c[1]
, c[2]
, …; that is, the coefficients are given in ascending order by power of z
. This macro expands to efficient inline code that uses either Horner’s method or, for complex z
, a more efficient Goertzel-like algorithm.
See also evalpoly.
Examples
julia> @evalpoly(3, 1, 0, 1)
10
julia> @evalpoly(2, 1, 0, 1)
5
julia> @evalpoly(2, 1, 1, 1)
7
Base.FastMath.@fastmath — Macro
Execute a transformed version of the expression, which calls functions that may violate strict IEEE semantics. This allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change numerical results.
This sets the , and corresponds to the -ffast-math
option in clang. See the notes on performance annotations for more details.
Examples
julia> @fastmath 1+2
3
julia> @fastmath(sin(3))
Some unicode characters can be used to define new binary operators that support infix notation. For example ⊗(x,y) = kron(x,y)
defines the ⊗
(otimes) function to be the Kronecker product, and one can call it as binary operator using infix syntax: C = A ⊗ B
as well as with the usual prefix syntax C = ⊗(A,B)
.
Other characters that support such extensions include \odot ⊙
and \oplus ⊕
The complete list is in the parser code:
- DK62Donald Knuth, Art of Computer Programming, Volume 2: Seminumerical Algorithms, Sec. 4.6.4.