Complex and Rational Numbers
The global constant im is bound to the complex number i, representing the principal square root of -1. (Using mathematicians’ or engineers’ j
for this global constant was rejected since they are such popular index variable names.) Since Julia allows numeric literals to be , this binding suffices to provide convenient syntax for complex numbers, similar to the traditional mathematical notation:
You can perform all the standard arithmetic operations with complex numbers:
julia> (1 + 2im)*(2 - 3im)
8 + 1im
julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im
julia> (1 + 2im) + (1 - 2im)
2 + 0im
julia> (-3 + 2im) - (5 - 1im)
-8 + 3im
julia> (-1 + 2im)^2
-3 - 4im
julia> (-1 + 2im)^2.5
2.729624464784009 - 6.9606644595719im
julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im
julia> 3(2 - 5im)
6 - 15im
julia> 3(2 - 5im)^2
-63 - 60im
julia> 3(2 - 5im)^-1.0
0.20689655172413796 + 0.5172413793103449im
The promotion mechanism ensures that combinations of operands of different types just work:
julia> 2(1 - 1im)
2 - 2im
julia> (2 + 3im) - 1
1 + 3im
julia> (1 + 2im) + 0.5
1.5 + 2.0im
julia> (2 + 3im) - 0.5im
2.0 + 2.5im
julia> 0.75(1 + 2im)
0.75 + 1.5im
julia> (2 + 3im) / 2
1.0 + 1.5im
julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im
julia> 2im^2
-2 + 0im
julia> 1 + 3/4im
1.0 - 0.75im
Note that 3/4im == 3/(4*im) == -(3/4*im)
, since a literal coefficient binds more tightly than division.
Standard functions to manipulate complex values are provided:
1 + 2im
julia> real(1 + 2im) # real part of z
1
julia> imag(1 + 2im) # imaginary part of z
2
julia> conj(1 + 2im) # complex conjugate of z
1 - 2im
julia> abs(1 + 2im) # absolute value of z
2.23606797749979
julia> abs2(1 + 2im) # squared absolute value
5
julia> angle(1 + 2im) # phase angle in radians
1.1071487177940904
As usual, the absolute value (abs) of a complex number is its distance from zero. gives the square of the absolute value, and is of particular use for complex numbers since it avoids taking a square root. angle returns the phase angle in radians (also known as the argument or arg function). The full gamut of other is also defined for complex numbers:
julia> sqrt(1im)
0.7071067811865476 + 0.7071067811865475im
julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im
julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991517997im
julia> exp(1 + 2im)
-1.1312043837568135 + 2.4717266720048188im
julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im
julia> sqrt(-1)
ERROR: DomainError with -1.0:
sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).
Stacktrace:
[...]
julia> sqrt(-1 + 0im)
0.0 + 1.0im
The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead, the multiplication must be explicitly written out:
However, this is not recommended. Instead, use the more efficient function to construct a complex value directly from its real and imaginary parts:
julia> a = 1; b = 2; complex(a, b)
1 + 2im
This construction avoids the multiplication and addition operations.
Inf and propagate through complex numbers in the real and imaginary parts of a complex number as described in the Special floating-point values section:
julia> 1 + Inf*im
1.0 + Inf*im
julia> 1 + NaN*im
1.0 + NaN*im
Rational Numbers
Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the operator:
julia> 2//3
2//3
If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the denominator is non-negative:
julia> 6//9
2//3
julia> -4//8
-1//2
julia> 5//-15
julia> -4//-12
1//3
julia> numerator(2//3)
2
julia> denominator(2//3)
3
Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and comparison operations are defined for rational values:
Rationals can easily be converted to floating-point numbers:
julia> float(3//4)
0.75
Conversion from rational to floating-point respects the following identity for any integral values of a
and b
, with the exception of the case a == 0
and b == 0
:
julia> a = 1; b = 2;
julia> isequal(float(a//b), a/b)
true
Constructing infinite rational values is acceptable:
julia> 5//0
1//0
julia> x = -3//0
-1//0
julia> typeof(x)
Rational{Int64}
Trying to construct a NaN rational value, however, is invalid:
julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:
[...]
As usual, the promotion system makes interactions with other numeric types effortless:
julia> 3//5 + 1
8//5
julia> 3//5 - 0.5
0.09999999999999998
julia> 2//7 * (1 + 2im)
2//7 + 4//7*im
julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im
julia> 3//2 / (1 + 2im)
3//10 - 3//5*im
julia> 1//2 + 2im
1//2 + 2//1*im
julia> 1 + 2//3im
1//1 - 2//3*im
julia> 0.5 == 1//2
true
julia> 0.33 == 1//3
false
julia> 0.33 < 1//3
true