Graph Generators
- parallelizable, in order to create large datasets
- scale-free, generating the same graph regardless of parallelism
- thrifty, using as few operators as possible
Graph generators are configured using the builder pattern. The parallelism of generator operators can be set explicitly by calling . Lowering the parallelism will reduce the allocation of memory and network buffers.
Graph-specific configuration must be called first, then configuration common to all generators, and lastly the call to generate()
. The following example configures a grid graph with two dimensions, configures the parallelism, and generates the graph.
Java
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.GridGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
wrapEndpoints = false
val parallelism = 4
val graph = new GridGraph(env.getJavaEnv).addDimension(2, wrapEndpoints).addDimension(4, wrapEndpoints).setParallelism(parallelism).generate()
A circulant graph is an configured with one or more contiguous ranges of offsets. Edges connect integer vertex IDs whose difference equals a configured offset. The circulant graph with no offsets is the empty graph and the graph with the maximum range is the .
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CirculantGraph(env, vertexCount)
.addRange(1, 2)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CirculantGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new CirculantGraph(env.getJavaEnv, vertexCount).addRange(1, 2).generate()
Complete Graph
An undirected graph connecting every distinct pair of vertices.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CompleteGraph(env, vertexCount)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CompleteGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new CompleteGraph(env.getJavaEnv, vertexCount).generate()
Cycle Graph
An undirected graph where the set of edges form a single cycle by connecting each vertex to two adjacent vertices in a chained loop.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new CycleGraph(env, vertexCount)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.CycleGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val graph = new CycleGraph(env.getJavaEnv, vertexCount).generate()
Java
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.EchoGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val vertexDegree = 2
val graph = new EchoGraph(env.getJavaEnv, vertexCount, vertexDegree).generate()
Empty Graph
A graph containing no edges.
Java
long vertexCount = 5;
Graph<LongValue, NullValue, NullValue> graph = new EmptyGraph(env, vertexCount)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.EmptyGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new EmptyGraph(env.getJavaEnv, vertexCount).generate()
Grid Graph
An undirected graph connecting vertices in a regular tiling in one or more dimensions. Each dimension is configured separately. When the dimension size is at least three the endpoints are optionally connected by setting wrapEndpoints
. Changing the following example to addDimension(4, true)
would connect 0
to 3
and 4
to 7
.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
boolean wrapEndpoints = false;
Graph<LongValue, NullValue, NullValue> graph = new GridGraph(env)
.addDimension(2, wrapEndpoints)
.addDimension(4, wrapEndpoints)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.GridGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val wrapEndpoints = false
val graph = new GridGraph(env.getJavaEnv).addDimension(2, wrapEndpoints).addDimension(4, wrapEndpoints).generate()
An undirected graph where edges form an n
-dimensional hypercube. Each vertex in a hypercube connects to one other vertex in each dimension.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long dimensions = 3;
Graph<LongValue, NullValue, NullValue> graph = new HypercubeGraph(env, dimensions)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.HypercubeGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val dimensions = 3
val graph = new HypercubeGraph(env.getJavaEnv, dimensions).generate()
Path Graph
An undirected graph where the set of edges form a single path by connecting two endpoint
vertices with degree 1
and all midpoint vertices with degree 2
. A path graph can be formed by removing a single edge from a cycle graph.
Java
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.PathGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 5
val graph = new PathGraph(env.getJavaEnv, vertexCount).generate()
RMat Graph
A directed power-law multigraph generated using the Recursive Matrix (R-Mat) model.
RMat is a stochastic generator configured with a source of randomness implementing the RandomGenerableFactory
interface. Provided implementations are JDKRandomGeneratorFactory
and MersenneTwisterFactory
. These generate an initial sequence of random values which are then used as seeds for generating the edges.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
RandomGenerableFactory<JDKRandomGenerator> rnd = new JDKRandomGeneratorFactory();
int vertexCount = 1 << scale;
int edgeCount = edgeFactor * vertexCount;
Graph<LongValue, NullValue, NullValue> graph = new RMatGraph<>(env, rnd, vertexCount, edgeCount)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.RMatGraph
val env = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 1 << scale
val edgeCount = edgeFactor * vertexCount
val graph = new RMatGraph(env.getJavaEnv, rnd, vertexCount, edgeCount).generate()
The default RMat constants can be overridden as shown in the following example. The constants define the interdependence of bits from each generated edge’s source and target labels. The RMat noise can be enabled and progressively perturbs the constants while generating each edge.
The RMat generator can be configured to produce a simple graph by removing self-loops and duplicate edges. Symmetrization is performed either by a “clip-and-flip” throwing away the half matrix above the diagonal or a full “flip” preserving and mirroring all edges.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
RandomGenerableFactory<JDKRandomGenerator> rnd = new JDKRandomGeneratorFactory();
int vertexCount = 1 << scale;
int edgeCount = edgeFactor * vertexCount;
boolean clipAndFlip = false;
Graph<LongValue, NullValue, NullValue> graph = new RMatGraph<>(env, rnd, vertexCount, edgeCount)
.setConstants(0.57f, 0.19f, 0.19f)
.setNoise(true, 0.10f)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.RMatGraph
val env = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 1 << scale
val edgeCount = edgeFactor * vertexCount
clipAndFlip = false
val graph = new RMatGraph(env.getJavaEnv, rnd, vertexCount, edgeCount).setConstants(0.57f, 0.19f, 0.19f).setNoise(true, 0.10f).generate()
An undirected graph containing isolated two-paths where every vertex has degree 1
.
Java
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
long vertexPairCount = 4
// note: configured with the number of vertex pairs
Graph<LongValue, NullValue, NullValue> graph = new SingletonEdgeGraph(env, vertexPairCount)
.generate();
Scala
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.SingletonEdgeGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexPairCount = 4
// note: configured with the number of vertex pairs
val graph = new SingletonEdgeGraph(env.getJavaEnv, vertexPairCount).generate()
Star Graph
An undirected graph containing a single central vertex connected to all other leaf vertices.
Java
import org.apache.flink.api.scala._
import org.apache.flink.graph.generator.StarGraph
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val vertexCount = 6
val graph = new StarGraph(env.getJavaEnv, vertexCount).generate()