使用方式:
接口文档:
https://pkg.go.dev/github.com/gogf/gf/v2/encoding/gbinary
用于二进制数据结构转换处理的接口文档如下:
func Encode(vs ...interface{}) ([]byte, error)
func EncodeInt(i int) []byte
func EncodeInt8(i int8) []byte
func EncodeInt16(i int16) []byte
func EncodeInt32(i int32) []byte
func EncodeInt64(i int64) []byte
func EncodeUint(i uint) []byte
func EncodeUint8(i uint8) []byte
func EncodeUint16(i uint16) []byte
func EncodeUint32(i uint32) []byte
func EncodeUint64(i uint64) []byte
func EncodeBool(b bool) []byte
func EncodeFloat32(f float32) []byte
func EncodeFloat64(f float64) []byte
func EncodeString(s string) []byte
func Decode(b []byte, vs ...interface{}) error
func DecodeToInt(b []byte) int
func DecodeToInt8(b []byte) int8
func DecodeToInt16(b []byte) int16
func DecodeToInt32(b []byte) int32
func DecodeToInt64(b []byte) int64
func DecodeToUint(b []byte) uint
func DecodeToUint8(b []byte) uint8
func DecodeToUint16(b []byte) uint16
func DecodeToUint32(b []byte) uint32
func DecodeToUint64(b []byte) uint64
func DecodeToBool(b []byte) bool
func DecodeToFloat32(b []byte) float32
func DecodeToFloat64(b []byte) float64
func DecodeToString(b []byte) string
支持按位处理的接口文档如下:
func EncodeBits(bits []Bit, i int, l int) []Bit
func EncodeBitsWithUint(bits []Bit, ui uint, l int) []Bit
func EncodeBitsToBytes(bits []Bit) []byte
func DecodeBits(bits []Bit) uint
func DecodeBitsToUint(bits []Bit) uint
func DecodeBytesToBits(bs []byte) []Bit
其中的Bit类型表示一个二进制数字(0或1),其定义如下:
我们来看一个比较完整的二进制操作示例,基本演示了绝大部分的二进制转换操作。
package main
import (
"fmt"
"github.com/gogf/gf/v2/os/glog"
"github.com/gogf/gf/v2/encoding/gbinary"
)
func main() {
// 使用gbinary.Encoded对基本数据类型进行二进制打包
if buffer := gbinary.Encode(18, 300, 1.01); buffer != nil {
// glog.Error(err)
} else {
fmt.Println(buffer)
}
// 使用gbinary.Decode对整形二进制解包,注意第二个及其后参数为字长确定的整形变量的指针地址,字长确定的类型,
// 例如:int8/16/32/64、uint8/16/32/64、float32/64
if buffer := gbinary.Encode(18, 300, 1.01); buffer != nil {
//glog.Error(err)
} else {
var i1 int8
var i2 int16
var f3 float64
if err := gbinary.Decode(buffer, &i1, &i2, &f3); err != nil {
glog.Error(err)
} else {
}
}
// 编码/解析 int,自动识别变量长度
fmt.Println(gbinary.DecodeToInt(gbinary.EncodeInt(1)))
fmt.Println(gbinary.DecodeToInt(gbinary.EncodeInt(300)))
fmt.Println(gbinary.DecodeToInt(gbinary.EncodeInt(70000)))
fmt.Println(gbinary.DecodeToInt(gbinary.EncodeInt(2000000000)))
fmt.Println(gbinary.DecodeToInt(gbinary.EncodeInt(500000000000)))
// 编码/解析 uint,自动识别变量长度
fmt.Println(gbinary.DecodeToUint(gbinary.EncodeUint(1)))
fmt.Println(gbinary.DecodeToUint(gbinary.EncodeUint(300)))
fmt.Println(gbinary.DecodeToUint(gbinary.EncodeUint(70000)))
fmt.Println(gbinary.DecodeToUint(gbinary.EncodeUint(2000000000)))
fmt.Println(gbinary.DecodeToUint(gbinary.EncodeUint(500000000000)))
// 编码/解析 int8/16/32/64
fmt.Println(gbinary.DecodeToInt8(gbinary.EncodeInt8(int8(100))))
fmt.Println(gbinary.DecodeToInt16(gbinary.EncodeInt16(int16(100))))
fmt.Println(gbinary.DecodeToInt32(gbinary.EncodeInt32(int32(100))))
fmt.Println(gbinary.DecodeToInt64(gbinary.EncodeInt64(int64(100))))
// 编码/解析 uint8/16/32/64
fmt.Println(gbinary.DecodeToUint8(gbinary.EncodeUint8(uint8(100))))
fmt.Println(gbinary.DecodeToUint16(gbinary.EncodeUint16(uint16(100))))
fmt.Println(gbinary.DecodeToUint32(gbinary.EncodeUint32(uint32(100))))
fmt.Println(gbinary.DecodeToUint64(gbinary.EncodeUint64(uint64(100))))
// 编码/解析 string
fmt.Println(gbinary.DecodeToString(gbinary.EncodeString("I'm string!")))
}
[18 44 1 41 92 143 194 245 40 240 63]
18 300 1.01
1
300
70000
2000000000
500000000000
1
300
70000
2000000000
500000000000
100
100
100
100
100
100
100
I'm string!
编码
gbinary.Encode
方法是一个非常强大灵活的方法,可以将所有的基本类型转换为二进制类型([ ]byte
)。在gbinary.Encode
方法内部,会自动对变量进行长度计算,采用最小二进制长度来存放该变量的二进制值。例如,针对int
类型值为1
的变量,gbinary.Encode
将只会用1
个byte
来存储,而int
类型值为300
的变量,将会使用2
个byte
来存储,尽量减少二进制结果的存储空间。因此,在解析的时候要非常注意[ ]byte
的长度,建议能够确定变量长度的地方,在进行二进制编码/解码时,尽量采用形如int8/16/32/64
的定长基本类型来存储变量,这样解析的时候也能够采用对应的变量形式进行解析,不易产生错误。包也提供了一系列
gbinary.Encode*
的方法,用于将基本数据类型转换为二进制。其中,gbinary.EncodeInt/gbinary.EncodeUint
也是会在内部自动识别变量值大小,返回不定长度的[ ]byte
值,长度范围1/2/4/8
。解码
在二进制类型的解析操作中,二进制的长度(
[ ]byte
的长度)是非常重要的,只有给定正确的长度才能执行正确的解析,因此gbinary.Decode
方法给定的变量长度必须为确定长度类型的变量,例如:int8/16/32/64
、uint8/16/32/64
、float32/64
,而如果给定的第二个变量地址对应的变量类型为int/uint
,无法确定长度,因此解析会失败。此外,
gbinary
包也提供了一系列gbinary.DecodeTo*
的方法,用于将二进制转换为特定的数据类型。其中,gbinary.DecodeToInt/gbinary.DecodeToUint
方法会对二进制长度进行自动识别解析,支持的二进制参数长度范围1-8
。
按位操作处理示例
gbinary
的Bits
相关操作简化了底层二进制位操作的复杂度,为精准的数据按位处理提供了可能。
批量传感器状态数据上报示例
看以下的例子,用以上报平台100个传感器已开启,上报的状态顺序便是传感器在网关下端口顺序(索引从0开始):
``` package main
gkvdb数据库META数据结构操作示例
我们再看看一个实战的例子。
gkvdb
是gf
框架相同作者开发的基于DRH算法的高性能Key-Value嵌入式数据库
,其中元数据的存储数据结构如下:[键名哈希64(64bit,8byte) 键名长度(8bit,1byte) 键值长度(24bit,3byte) 数据文件偏移量(40bit,5byte)](变长)
我们使用一条元数据来演示编码/解码操作。
github.com/gogf/gf/v2/blob/master/.example/encoding/gbinary/bits2.go
``` package main
import (
"fmt"
"github.com/gogf/gf/v2/encoding/gbinary"
)
func main() {
// Meta元数据文件数据结构:[键名哈希64(64bit,8byte) 键名长度(8bit,1byte) 键值长度(24bit,3byte) 数据文件偏移量(40bit,5byte)](变长)
hash := 521369841259754125
klen := 12
vlen := 35535
offset := 80000000
// 编码
bits := make([]gbinary.Bit, 0)
bits = gbinary.EncodeBits(bits, hash, 64)
bits = gbinary.EncodeBits(bits, klen, 8)
bits = gbinary.EncodeBits(bits, vlen, 24)
bits = gbinary.EncodeBits(bits, offset, 40)
buffer := gbinary.EncodeBitsToBytes(bits)
fmt.Println("meta length:", len(buffer))
/* 文件存储及数据查询过程忽略,这里只展示元数据编码/解码示例 */
// 解码
metabits := gbinary.DecodeBytesToBits(buffer)
fmt.Println("hash :", gbinary.DecodeBits(metabits[0 : 64]))
fmt.Println("klen :", gbinary.DecodeBits(metabits[64 : 72]))
fmt.Println("vlen :", gbinary.DecodeBits(metabits[72 : 96]))
fmt.Println("offset:", gbinary.DecodeBits(metabits[96 : 136]))
}
```
运行后,输出结果为:
```
meta length: 17
hash : 521369841259754125
klen : 12
vlen : 35535
offset: 80000000
```