interface
简单的说,interface
是一组method
签名的组合,通过interface
来定义对象的一组行为。
前面例子中Student
和Employee
都能SayHi
,虽然他们的内部实现不一样,但是那不重要,重要的是他们都能say hi
继续做更多的扩展,Student
和Employee
实现另一个方法Sing
,然后Student
实现方法BorrowMoney
而Employee
实现SpendSalary
。
这样Student
实现了三个方法:SayHi
、Sing
、BorrowMoney
;而Employee
实现了SayHi
、Sing
、SpendSalary
。
上面这些方法的组合称为interface
(被对象Student
和Employee
实现)。例如Student
和Employee
都实现了interface
:SayHi
和Sing
,也就是这两个对象是该interface
类型。而Employee
没有实现这个interface:SayHi、Sing
和BorrowMoney
,因为Employee
没有实现BorrowMoney
这个方法。
interface类型
interface
类型定义了一组方法,如果某个对象实现了某个接口的所有方法,则此对象就实现了此接口。详细的语法参考下面这个例子
通过上面的代码可以知道,interface可以被任意的对象实现。看到上面的Men interface被Human、Student和Employee实现。同理,一个对象可以实现任意多个interface,例如上面的Student实现了Men和YoungChap两个interface。
最后,任意的类型都实现了空interface(这样定义:interface{}),也就是包含0个method的interface。
那么interface里面到底能存什么值呢?如果定义了一个interface的变量,那么这个变量里面可以存实现这个interface的任意类型的对象。例如上面例子中,定义了一个Men interface类型的变量m,那么m里面可以存Human、Student或者Employee值。
来看一下下面这个例子:
package main
import "fmt"
type Human struct {
name string
age int
phone string
}
type Student struct {
Human //匿名字段
school string
loan float32
}
type Employee struct {
Human //匿名字段
company string
money float32
}
//Human实现SayHi方法
func (h Human) SayHi() {
fmt.Printf("Hi, I am %s you can call me on %s\n", h.name, h.phone)
}
//Human实现Sing方法
func (h Human) Sing(lyrics string) {
fmt.Println("La la la la...", lyrics)
}
func (e Employee) SayHi() {
fmt.Printf("Hi, I am %s, I work at %s. Call me on %s\n", e.name,
e.company, e.phone)
}
// Interface Men被Human,Student和Employee实现
// 因为这三个类型都实现了这两个方法
type Men interface {
SayHi()
Sing(lyrics string)
}
func main() {
mike := Student{Human{"Mike", 25, "222-222-XXX"}, "MIT", 0.00}
paul := Student{Human{"Paul", 26, "111-222-XXX"}, "Harvard", 100}
tom := Employee{Human{"Tom", 37, "222-444-XXX"}, "Things Ltd.", 5000}
//定义Men类型的变量i
var i Men
//i能存储Student
i = mike
fmt.Println("This is Mike, a Student:")
i.SayHi()
i.Sing("November rain")
//i也能存储Employee
i = tom
fmt.Println("This is tom, an Employee:")
i.SayHi()
i.Sing("Born to be wild")
//定义了slice Men
fmt.Println("Let's use a slice of Men and see what happens")
x := make([]Men, 3)
//这三个都是不同类型的元素,但是他们实现了interface同一个接口
x[0], x[1], x[2] = paul, sam, mike
for _, value := range x{
value.SayHi()
}
}
通过上面的代码,发现interface
就是一组抽象方法的集合,它必须由其他非interface类型实现,而不能自我实现, Go通过interface实现了duck-typing
:即”当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子”。
空interface
空interface(interface{})不包含任何的method,正因为如此,所有的类型都实现了空interface。空interface对于描述起不到任何的作用(因为它不包含任何的method),但是空interface需要存储任意类型的数值的时候相当有用,因为它可以存储任意类型的数值。它有点类似于C语言的void*类型。
// 定义a为空接口
var a interface{}
var i int = 5
s := "Hello world"
// a可以存储任意类型的数值
a = i
a = s
一个函数把interface{}作为参数,那么他可以接受任意类型的值作为参数,如果一个函数返回interface{}
,那么也就可以返回任意类型的值。是不是很有用啊!
interface的变量可以持有任意实现该interface类型的对象,这给编写函数(包括method)提供了一些额外的思考,是不是可以通过定义interface参数,让函数接受各种类型的参数。
举个例子:fmt.Println是常用的一个函数,是否注意到它可以接受任意类型的数据。打开fmt的源码文件,会看到这样一个定义:
也就是说,任何实现了String方法的类型都能作为参数被fmt.Println
调用,来试一试
package main
import (
"fmt"
"strconv"
)
type Human struct {
name string
age int
phone string
}
// 通过这个方法 Human 实现了 fmt.Stringer
func (h Human) String() string {
return "❰"+h.name+" - "+strconv.Itoa(h.age)+" years - ✆ " +h.phone+"❱"
}
func main() {
fmt.Println("This Human is : ", Bob)
现在再回顾一下前面的Box示例,发现Color结构也定义了一个method:String
。其实这也是实现了fmt.Stringer
这个interface
,即如果需要某个类型能被fmt包以特殊的格式输出,就必须实现Stringer
这个接口。如果没有实现这个接口,fmt将以默认的方式输出。
//实现同样的功能
fmt.Println("The biggest one is", boxes.BiggestsColor().String())
fmt.Println("The biggest one is", boxes.BiggestsColor())
注:实现了error
接口的对象(即实现了Error() string的对象),使用fmt输出时,会调用Error()方法,因此不必再定义String()方法了。
interface变量存储的类型
- Comma-ok断言
Go语言里面有一个语法,可以直接判断是否是该类型的变量: value, ok = element.(T),这里value就是变量的值,ok是一个bool类型,element是interface变量,T是断言的类型。
如果element里面确实存储了T类型的数值,那么ok返回true,否则返回false。
通过一个例子来更加深入的理解。
是否注意到了多个if里面,if里面允许初始化变量。断言的类型越多,那么if else也就越多,所以才引出了下面要介绍的switch。
- switch测试
重写上面的这个实现
package main
import (
"fmt"
"strconv"
)
type Element interface{}
type List [] Element
type Person struct {
name string
age int
}
//打印
func (p Person) String() string {
return "(name: " + p.name + " - age: "+strconv.Itoa(p.age)+ " years)"
}
func main() {
list := make(List, 3)
list[0] = 1 //an int
list[1] = "Hello" //a string
list[2] = Person{"Dennis", 70}
for index, element := range list{
switch value := element.(type) {
case int:
fmt.Printf("list[%d] is an int and its value is %d\n", index, value)
case string:
fmt.Printf("list[%d] is a string and its value is %s\n", index, value)
case Person:
fmt.Printf("list[%d] is a Person and its value is %s\n", index, value)
default:
fmt.Println("list[%d] is of a different type", index)
}
}
}
这里有一点需要强调的是:element.(type)
语法不能在switch外的任何逻辑里面使用,如果要在switch外面判断一个类型就使用comma-ok
。
Go里面真正吸引人的是它内置的逻辑语法,就像在学习Struct时学习的匿名字段,那么相同的逻辑引入到interface里面,更加完美了。如果一个interface1作为interface2的一个嵌入字段,那么interface2隐式的包含了interface1里面的method。
可以看到源码包container/heap
里面有这样的一个定义
type Interface interface {
sort.Interface //嵌入字段sort.Interface
Push(x interface{}) //a Push method to push elements into the heap
Pop() interface{} //a Pop elements that pops elements from the heap
}
看到sort.Interface
其实就是嵌入字段,把sort.Interface
的所有method
给隐式的包含进来了。也就是下面三个方法:
// io.ReadWriter
type ReadWriter interface {
Reader