Properties Reference
redistribute-writes
Type:
boolean
Default value:
true
This property enables redistribution of data before writing. This can eliminate the performance impact of data skew when writing by hashing it across nodes in the cluster. It can be disabled when it is known that the output data set is not skewed in order to avoid the overhead of hashing and redistributing all the data across the network. This can also be specified on a per-query basis using the
redistribute_writes
session property.
Memory Management Properties
query.max-memory-per-node
Type:
data size
Default value:
JVM max memory * 0.1
This is the max amount of user memory a query can use on a worker. User memory is allocated during execution for things that are directly attributable to or controllable by a user query. For example, memory used by the hash tables built during execution, memory used during sorting, etc. When the user memory allocation of a query on any worker hits this limit it will be killed.
query.max-total-memory-per-node
Type:
data size
Default value:
JVM max memory * 0.3
This is the max amount of user and system memory a query can use on a worker. System memory is allocated during execution for things that are not directly attributable to or controllable by a user query. For example, memory allocated by the readers, writers, network buffers, etc. When the sum of the user and system memory allocated by a query on any worker hits this limit it will be killed. The value of
query.max-total-memory-per-node
must be greater thanquery.max-memory-per-node
.
query.max-memory
Type:
data size
Default value:
20GB
This is the max amount of user memory a query can use across the entire cluster. User memory is allocated during execution for things that are directly attributable to or controllable by a user query. For example, memory used by the hash tables built during execution, memory used during sorting, etc. When the user memory allocation of a query across all workers hits this limit it will be killed.
query.max-total-memory
Type:
data size
Default value:
query.max-memory * 2
This is the max amount of user and system memory a query can use across the entire cluster. System memory is allocated during execution for things that are not directly attributable to or controllable by a user query. For example, memory allocated by the readers, writers, network buffers, etc. When the sum of the user and system memory allocated by a query across all workers hits this limit it will be killed. The value of
query.max-total-memory
must be greater thanquery.max-memory
.
memory.heap-headroom-per-node
Type:
data size
Default value:
JVM max memory * 0.3
This is the amount of memory set aside as headroom/buffer in the JVM heap for allocations that are not tracked by Presto.
query.low-memory-killer.policy
Type:
string
Default value:
none
The policy used for selecting the query to kill when the cluster is out of memory (OOM). This property can have one of the following values:
none
,total-reservation
, ortotal-reservation-on-blocked-nodes
.none
disables the cluster OOM killer. The value oftotal-reservation
configures a policy that kills the query with the largest memory reservation across the cluster. The value oftotal-reservation-on-blocked-nodes
configures a policy that kills the query using the most memory on the workers that are out of memory (blocked).
experimental.spill-enabled
Type:
boolean
Default value:
false
Try spilling memory to disk to avoid exceeding memory limits for the query.
Spilling works by offloading memory to disk. This process can allow a query with a large memory footprint to pass at the cost of slower execution times. Currently, spilling is supported only for aggregations and joins (inner and outer), so this property will not reduce memory usage required for window functions, sorting and other join types.
Be aware that this is an experimental feature and should be used with care.
This config property can be overridden by the
spill_enabled
session property.
experimental.join-spill-enabled
Type:
boolean
Default value:
true
When
spill_enabled
istrue
, this determines whether Presto will try spilling memory to disk for joins to avoid exceeding memory limits for the query.This config property can be overridden by the
join_spill_enabled
session property.
experimental.aggregation-spill-enabled
Type:
boolean
Default value:
true
When is
true
, this determines whether Presto will try spilling memory to disk for aggregations to avoid exceeding memory limits for the query.This config property can be overridden by the
aggregation_spill_enabled
session property.
experimental.distinct-aggregation-spill-enabled
Type:
boolean
Default value:
true
When
aggregation_spill_enabled
istrue
, this determines whether Presto will try spilling memory to disk for distinct aggregations to avoid exceeding memory limits for the query.This config property can be overridden by the
distinct_aggregation_spill_enabled
session property.
experimental.order-by-aggregation-spill-enabled
Type:
boolean
Default value:
true
When
aggregation_spill_enabled
istrue
, this determines whether Presto will try spilling memory to disk for order by aggregations to avoid exceeding memory limits for the query.This config property can be overridden by the
order_by_aggregation_spill_enabled
session property.
experimental.window-spill-enabled
Type:
boolean
Default value:
true
When
spill_enabled
istrue
, this determines whether Presto will try spilling memory to disk for window functions to avoid exceeding memory limits for the query.This config property can be overridden by the
window_spill_enabled
session property.
experimental.order-by-spill-enabled
Type:
boolean
Default value:
true
When
spill_enabled
istrue
, this determines whether Presto will try spilling memory to disk for order by to avoid exceeding memory limits for the query.This config property can be overridden by the
order_by_spill_enabled
session property.
experimental.spiller.task-spilling-strategy
Type:
string
Allowed values:
ORDER_BY_CREATE_TIME
,ORDER_BY_REVOCABLE_BYTES
,PER_TASK_MEMORY_THRESHOLD
Default value:
ORDER_BY_CREATE_TIME
Determines the strategy to use to choose when to revoke memory and from which tasks.
ORDER_BY_CREATE_TIME
andORDER_BY_REVOCABLE_BYTES
will trigger spilling when the memory pool is filled beyond theexperimental.memory-revoking-threshold
until the memory pool usage is belowexperimental.memory-revoking-target
.ORDER_BY_CREATE_TIME
will trigger revocation from older tasks first, whileORDER_BY_REVOCABLE_BYTES
will trigger revocation from tasks that are using more revocable memory first.
PER_TASK_MEMORY_THRESHOLD
will trigger spilling whenever the revocable memory used by a task exceedsexperimental.spiller.max-revocable-task-memory
.Warning
The
PER_TASK_MEMORY_THRESHOLD
strategy does not trigger spilling when the memory pool is full, which can prevent the out of memory query killer from kicking in. This is particularly risky if Presto is running without a reserved memory pool.
experimental.memory-revoking-threshold
Type:
double
Minimum value:
0
Maximum value:
1
Default value:
0.9
Trigger memory revocation when the memory pool is filled above this percentage.
experimental.memory-revoking-target
Type:
double
Minimum value:
0
Maximum value:
1
Default value:
0.5
experimental.query-limit-spill-enabled
Type:
boolean
Default value:
false
When spill is enabled and
experimental.spiller.task-spilling-strategy
isORDER_BY_CREATE_TIME
orORDER_BY_REVOCABLE_BYTES
, then also spill revocable memory from a query whenever its combined revocable, user, and system memory exceedsquery_max_total_memory_per_node
. This allows queries to have more consistent performance regardless of the load on the cluster at the cost of less efficient use of available memory.
experimental.spiller-spill-path
Type:
string
No default value. Must be set when spilling is enabled
Directory where spilled content will be written. It can be a comma separated list to spill simultaneously to multiple directories, which helps to utilize multiple drives installed in the system.
It is not recommended to spill to system drives. Most importantly, do not spill to the drive on which the JVM logs are written, as disk overutilization might cause JVM to pause for lengthy periods, causing queries to fail.
experimental.spiller-max-used-space-threshold
Type:
double
Default value:
0.9
If disk space usage ratio of a given spill path is above this threshold, this spill path will not be eligible for spilling.
experimental.spiller-threads
Type:
integer
Default value:
4
Number of spiller threads. Increase this value if the default is not able to saturate the underlying spilling device (for example, when using RAID).
experimental.max-spill-per-node
Type:
data size
Default value:
100 GB
Max spill space to be used by all queries on a single node.
experimental.query-max-spill-per-node
Type:
data size
Default value:
100 GB
Max spill space to be used by a single query on a single node.
experimental.aggregation-operator-unspill-memory-limit
Type:
data size
Default value:
4 MB
Limit for memory used for unspilling a single aggregation operator instance.
experimental.spill-compression-enabled
Type:
boolean
Default value:
false
Enables data compression for pages spilled to disk
experimental.spill-encryption-enabled
Type:
boolean
Default value:
false
Enables using a randomly generated secret key (per spill file) to encrypt and decrypt data spilled to disk
Exchange Properties
Exchanges transfer data between Presto nodes for different stages of a query. Adjusting these properties may help to resolve inter-node communication issues or improve network utilization.
exchange.client-threads
Type:
integer
Minimum value:
1
Default value:
25
Number of threads used by exchange clients to fetch data from other Presto nodes. A higher value can improve performance for large clusters or clusters with very high concurrency, but excessively high values may cause a drop in performance due to context switches and additional memory usage.
exchange.concurrent-request-multiplier
Type:
integer
Minimum value:
1
Default value:
3
Multiplier determining the number of concurrent requests relative to available buffer memory. The maximum number of requests is determined using a heuristic of the number of clients that can fit into available buffer space based on average buffer usage per request times this multiplier. For example, with an
exchange.max-buffer-size
of32 MB
and20 MB
already used and average size per request being2MB
, the maximum number of clients ismultiplier * ((32MB - 20MB) / 2MB) = multiplier * 6
. Tuning this value adjusts the heuristic, which may increase concurrency and improve network utilization.
exchange.max-buffer-size
Default value:
32MB
Size of buffer in the exchange client that holds data fetched from other nodes before it is processed. A larger buffer can increase network throughput for larger clusters and thus decrease query processing time, but will reduce the amount of memory available for other usages.
exchange.max-response-size
Type:
data size
Minimum value:
1MB
Default value:
16MB
Maximum size of a response returned from an exchange request. The response will be placed in the exchange client buffer which is shared across all concurrent requests for the exchange.
Increasing the value may improve network throughput if there is high latency. Decreasing the value may improve query performance for large clusters as it reduces skew due to the exchange client buffer holding responses for more tasks (rather than hold more data from fewer tasks).
sink.max-buffer-size
Type:
data size
Default value:
32MB
Output buffer size for task data that is waiting to be pulled by upstream tasks. If the task output is hash partitioned, then the buffer will be shared across all of the partitioned consumers. Increasing this value may improve network throughput for data transferred between stages if the network has high latency or if there are many nodes in the cluster.
task.concurrency
Type:
integer
Restrictions: must be a power of two
Default value:
16
Default local concurrency for parallel operators such as joins and aggregations. This value should be adjusted up or down based on the query concurrency and worker resource utilization. Lower values are better for clusters that run many queries concurrently because the cluster will already be utilized by all the running queries, so adding more concurrency will result in slow downs due to context switching and other overhead. Higher values are better for clusters that only run one or a few queries at a time. This can also be specified on a per-query basis using the session property.
task.http-response-threads
Type:
integer
Minimum value:
1
Default value:
100
Maximum number of threads that may be created to handle HTTP responses. Threads are created on demand and are cleaned up when idle, thus there is no overhead to a large value if the number of requests to be handled is small. More threads may be helpful on clusters with a high number of concurrent queries, or on clusters with hundreds or thousands of workers.
task.http-timeout-threads
Type:
integer
Minimum value:
1
Default value:
3
Number of threads used to handle timeouts when generating HTTP responses. This value should be increased if all the threads are frequently in use. This can be monitored via the
com.facebook.presto.server:name=AsyncHttpExecutionMBean:TimeoutExecutor
JMX object. IfActiveCount
is always the same asPoolSize
, increase the number of threads.
task.info-update-interval
Type:
duration
Minimum value:
1ms
Maximum value:
10s
Default value:
3s
Controls staleness of task information, which is used in scheduling. Larger values can reduce coordinator CPU load, but may result in suboptimal split scheduling.
task.max-partial-aggregation-memory
Type:
data size
Default value:
16MB
Maximum size of partial aggregation results for distributed aggregations. Increasing this value can result in less network transfer and lower CPU utilization by allowing more groups to be kept locally before being flushed, at the cost of additional memory usage.
task.min-drivers
Type:
integer
Default value:
task.max-worker-threads * 2
The target number of running leaf splits on a worker. This is a minimum value because each leaf task is guaranteed at least
3
running splits. Non-leaf tasks are also guaranteed to run in order to prevent deadlocks. A lower value may improve responsiveness for new tasks, but can result in underutilized resources. A higher value can increase resource utilization, but uses additional memory.
task.writer-count
Type:
integer
Restrictions: must be a power of two
Default value:
1
The number of concurrent writer threads per worker per query. Increasing this value may increase write speed, especially when a query is not I/O bound and can take advantage of additional CPU for parallel writes (some connectors can be bottlenecked on CPU when writing due to compression or other factors). Setting this too high may cause the cluster to become overloaded due to excessive resource utilization. This can also be specified on a per-query basis using the
task_writer_count
session property.
task.interrupt-runaway-splits-timeout
Type:
duration
Default value:
10m
Timeout for interrupting split threads blocked without yielding control. Only threads blocked in specific locations are interrupted. Currently this is just threads blocked in the Joni regular expression library.
Node Scheduler Properties
node-scheduler.max-splits-per-node
Type:
integer
Default value:
100
The target value for the number of splits that can be running for each worker node, assuming all splits have the standard split weight.
Using a higher value is recommended if queries are submitted in large batches (e.g., running a large group of reports periodically) or for connectors that produce many splits that complete quickly but do not support assigning split weight values to express that to the split scheduler. Increasing this value may improve query latency by ensuring that the workers have enough splits to keep them fully utilized.
When connectors do support weight based split scheduling, the number of splits assigned will depend on the weight of the individual splits. If splits are small, more of them are allowed to be assigned to each worker to compensate.
Setting this too high will waste memory and may result in lower performance due to splits not being balanced across workers. Ideally, it should be set such that there is always at least one split waiting to be processed, but not higher.
node-scheduler.max-pending-splits-per-task
Type:
integer
Default value:
10
The number of outstanding splits with the standard split weight that can be queued for each worker node for a single stage of a query, even when the node is already at the limit for total number of splits. Allowing a minimum number of splits per stage is required to prevent starvation and deadlocks.
This value must be smaller than
node-scheduler.max-splits-per-node
, will usually be increased for the same reasons, and has similar drawbacks if set too high.
node-scheduler.min-candidates
Type:
integer
Minimum value:
1
Default value:
10
The minimum number of candidate nodes that will be evaluated by the node scheduler when choosing the target node for a split. Setting this value too low may prevent splits from being properly balanced across all worker nodes. Setting it too high may increase query latency and increase CPU usage on the coordinator.
node-scheduler.network-topology
Type:
string
Allowed values:
legacy
,flat
Default value:
legacy
Sets the network topology to use when scheduling splits.
legacy
will ignore the topology when scheduling splits.flat
will try to schedule splits on the host where the data is located by reserving 50% of the work queue for local splits. It is recommended to useflat
for clusters where distributed storage runs on the same nodes as Presto workers.
optimizer.dictionary-aggregation
Type:
boolean
Default value:
false
Enables optimization for aggregations on dictionaries. This can also be specified on a per-query basis using the
dictionary_aggregation
session property.
optimizer.optimize-hash-generation
Type:
boolean
Default value:
true
Compute hash codes for distribution, joins, and aggregations early during execution, allowing result to be shared between operations later in the query. This can reduce CPU usage by avoiding computing the same hash multiple times, but at the cost of additional network transfer for the hashes. In most cases it will decrease overall query processing time. This can also be specified on a per-query basis using the
optimize_hash_generation
session property.It is often helpful to disable this property when using EXPLAIN in order to make the query plan easier to read.
optimizer.optimize-metadata-queries
Type:
boolean
Default value:
false
Enable optimization of some aggregations by using values that are stored as metadata. This allows Presto to execute some simple queries in constant time. Currently, this optimization applies to
max
,min
andapprox_distinct
of partition keys and other aggregation insensitive to the cardinality of the input (includingDISTINCT
aggregates). Using this may speed up some queries significantly.The main drawback is that it can produce incorrect results if the connector returns partition keys for partitions that have no rows. In particular, the Hive connector can return empty partitions if they were created by other systems (Presto cannot create them).
optimizer.optimize-single-distinct
Type:
boolean
Default value:
true
The single distinct optimization will try to replace multiple
DISTINCT
clauses with a singleGROUP BY
clause, which can be substantially faster to execute.
optimizer.push-aggregation-through-join
Type:
boolean
Default value:
true
When an aggregation is above an outer join and all columns from the outer side of the join are in the grouping clause, the aggregation is pushed below the outer join. This optimization is particularly useful for correlated scalar subqueries, which get rewritten to an aggregation over an outer join. For example:
Enabling this optimization can substantially speed up queries by reducing the amount of data that needs to be processed by the join. However, it may slow down some queries that have very selective joins. This can also be specified on a per-query basis using the
push_aggregation_through_join
session property.
optimizer.push-table-write-through-union
Type:
boolean
Default value:
true
Parallelize writes when using
UNION ALL
in queries that write data. This improves the speed of writing output tables inUNION ALL
queries because these writes do not require additional synchronization when collecting results. Enabling this optimization can improveUNION ALL
speed when write speed is not yet saturated. However, it may slow down queries in an already heavily loaded system. This can also be specified on a per-query basis using thepush_table_write_through_union
session property.
optimizer.join-reordering-strategy
Type:
string
Allowed values:
AUTOMATIC
,ELIMINATE_CROSS_JOINS
,NONE
Default value:
ELIMINATE_CROSS_JOINS
The join reordering strategy to use.
NONE
maintains the order the tables are listed in the query.ELIMINATE_CROSS_JOINS
reorders joins to eliminate cross joins where possible and otherwise maintains the original query order. When reordering joins it also strives to maintain the original table order as much as possible.AUTOMATIC
enumerates possible orders and uses statistics-based cost estimation to determine the least cost order. If stats are not available or if for any reason a cost could not be computed, theELIMINATE_CROSS_JOINS
strategy is used. This can also be specified on a per-query basis using thejoin_reordering_strategy
session property.
optimizer.max-reordered-joins
Type:
integer
Default value:
9
When optimizer.join-reordering-strategy is set to cost-based, this property determines the maximum number of joins that can be reordered at once.
Warning
The number of possible join orders scales factorially with the number of relations, so increasing this value can cause serious performance issues.
Regular Expression Function Properties
The following properties allow tuning the Regular Expression Functions.
regex-library
Type:
string
Allowed values:
JONI
,RE2J
Default value:
JONI
Which library to use for regular expression functions.
JONI
is generally faster for common usage, but can require exponential time for certain expression patterns.RE2J
uses a different algorithm which guarantees linear time, but is often slower.
re2j.dfa-states-limit
Type:
integer
Minimum value:
2
Default value:
2147483647
The maximum number of states to use when RE2J builds the fast but potentially memory intensive deterministic finite automaton (DFA) for regular expression matching. If the limit is reached, RE2J will fall back to the algorithm that uses the slower, but less memory intensive non-deterministic finite automaton (NFA). Decreasing this value decreases the maximum memory footprint of a regular expression search at the cost of speed.
re2j.dfa-retries
Type:
integer
Minimum value:
Default value:
5
The number of times that RE2J will retry the DFA algorithm when it reaches a states limit before using the slower, but less memory intensive NFA algorithm for all future inputs for that search. If hitting the limit for a given input row is likely to be an outlier, you want to be able to process subsequent rows using the faster DFA algorithm. If you are likely to hit the limit on matches for subsequent rows as well, you want to use the correct algorithm from the beginning so as not to waste time and resources. The more rows you are processing, the larger this value should be.