Images
You typically create a container image of your application and push it to a registry before referring to it in a Pod.
This page provides an outline of the container image concept.
Note: If you are looking for the container images for a Kubernetes release (such as v1.27, the latest minor release), visit .
Container images are usually given a name such as , example/mycontainer
, or kube-apiserver
. Images can also include a registry hostname; for example: fictional.registry.example/imagename
, and possibly a port number as well; for example: fictional.registry.example:10443/imagename
.
If you don’t specify a registry hostname, Kubernetes assumes that you mean the Docker public registry.
After the image name part you can add a tag (in the same way you would when using with commands like docker
or podman
). Tags let you identify different versions of the same series of images.
Image tags consist of lowercase and uppercase letters, digits, underscores (_
), periods (.
), and dashes (-
).
There are additional rules about where you can place the separator characters (_
, -
, and .
) inside an image tag.
If you don’t specify a tag, Kubernetes assumes you mean the tag latest
.
Updating images
When you first create a Deployment, , Pod, or other object that includes a Pod template, then by default the pull policy of all containers in that pod will be set to IfNotPresent
if it is not explicitly specified. This policy causes the kubelet to skip pulling an image if it already exists.
The imagePullPolicy
for a container and the tag of the image affect when the kubelet attempts to pull (download) the specified image.
Here’s a list of the values you can set for imagePullPolicy
and the effects these values have:
IfNotPresent
the image is pulled only if it is not already present locally.
Always
every time the kubelet launches a container, the kubelet queries the container image registry to resolve the name to an image . If the kubelet has a container image with that exact digest cached locally, the kubelet uses its cached image; otherwise, the kubelet pulls the image with the resolved digest, and uses that image to launch the container.
Never
the kubelet does not try fetching the image. If the image is somehow already present locally, the kubelet attempts to start the container; otherwise, startup fails. See pre-pulled images for more details.
The caching semantics of the underlying image provider make even imagePullPolicy: Always
efficient, as long as the registry is reliably accessible. Your container runtime can notice that the image layers already exist on the node so that they don’t need to be downloaded again.
Note:
You should avoid using the :latest
tag when deploying containers in production as it is harder to track which version of the image is running and more difficult to roll back properly.
Instead, specify a meaningful tag such as v1.42.0
.
To make sure the Pod always uses the same version of a container image, you can specify the image’s digest; replace <image-name>:<tag>
with <image-name>@<digest>
(for example, image@sha256:45b23dee08af5e43a7fea6c4cf9c25ccf269ee113168c19722f87876677c5cb2
).
When using image tags, if the image registry were to change the code that the tag on that image represents, you might end up with a mix of Pods running the old and new code. An image digest uniquely identifies a specific version of the image, so Kubernetes runs the same code every time it starts a container with that image name and digest specified. Specifying an image by digest fixes the code that you run so that a change at the registry cannot lead to that mix of versions.
There are third-party that mutate Pods (and pod templates) when they are created, so that the running workload is defined based on an image digest rather than a tag. That might be useful if you want to make sure that all your workload is running the same code no matter what tag changes happen at the registry.
Default image pull policy
- if you omit the
imagePullPolicy
field, and the tag for the container image is:latest
,imagePullPolicy
is automatically set to ; - if you omit the
imagePullPolicy
field, and you don’t specify the tag for the container image,imagePullPolicy
is automatically set toAlways
;
Note:
The value of imagePullPolicy
of the container is always set when the object is first created, and is not updated if the image’s tag later changes.
For example, if you create a Deployment with an image whose tag is not :latest
, and later update that Deployment’s image to a :latest
tag, the imagePullPolicy
field will not change to Always
. You must manually change the pull policy of any object after its initial creation.
Required image pull
If you would like to always force a pull, you can do one of the following:
- Set the
imagePullPolicy
of the container toAlways
. - Omit the
imagePullPolicy
and use:latest
as the tag for the image to use; Kubernetes will set the policy toAlways
when you submit the Pod. - Omit the
imagePullPolicy
and the tag for the image to use; Kubernetes will set the policy toAlways
when you submit the Pod. - Enable the AlwaysPullImages admission controller.
ImagePullBackOff
When a kubelet starts creating containers for a Pod using a container runtime, it might be possible the container is in Waiting state because of ImagePullBackOff
.
The status ImagePullBackOff
means that a container could not start because Kubernetes could not pull a container image (for reasons such as invalid image name, or pulling from a private registry without imagePullSecret
). The BackOff
part indicates that Kubernetes will keep trying to pull the image, with an increasing back-off delay.
Kubernetes raises the delay between each attempt until it reaches a compiled-in limit, which is 300 seconds (5 minutes).
By default, kubelet pulls images serially. In other words, kubelet sends only one image pull request to the image service at a time. Other image pull requests have to wait until the one being processed is complete.
Nodes make image pull decisions in isolation. Even when you use serialized image pulls, two different nodes can pull the same image in parallel.
If you would like to enable parallel image pulls, you can set the field serializeImagePulls
to false in the kubelet configuration. With serializeImagePulls
set to false, image pull requests will be sent to the image service immediately, and multiple images will be pulled at the same time.
When enabling parallel image pulls, please make sure the image service of your container runtime can handle parallel image pulls.
The kubelet never pulls multiple images in parallel on behalf of one Pod. For example, if you have a Pod that has an init container and an application container, the image pulls for the two containers will not be parallelized. However, if you have two Pods that use different images, the kubelet pulls the images in parallel on behalf of the two different Pods, when parallel image pulls is enabled.
FEATURE STATE: Kubernetes v1.27 [alpha]
When serializeImagePulls
is set to false, the kubelet defaults to no limit on the maximum number of images being pulled at the same time. If you would like to limit the number of parallel image pulls, you can set the field maxParallelImagePulls
in kubelet configuration. With maxParallelImagePulls
set to n, only n images can be pulled at the same time, and any image pull beyond n will have to wait until at least one ongoing image pull is complete.
Limiting the number parallel image pulls would prevent image pulling from consuming too much network bandwidth or disk I/O, when parallel image pulling is enabled.
You can set to a positive number that is greater than or equal to 1. If you set maxParallelImagePulls
to be greater than or equal to 2, you must set the serializeImagePulls
to false. The kubelet will fail to start with invalid maxParallelImagePulls
settings.
Multi-architecture images with image indexes
As well as providing binary images, a container registry can also serve a . An image index can point to multiple image manifests for architecture-specific versions of a container. The idea is that you can have a name for an image (for example: pause
, example/mycontainer
, kube-apiserver
) and allow different systems to fetch the right binary image for the machine architecture they are using.
Kubernetes itself typically names container images with a suffix -$(ARCH)
. For backward compatibility, please generate the older images with suffixes. The idea is to generate say pause
image which has the manifest for all the arch(es) and say pause-amd64
which is backwards compatible for older configurations or YAML files which may have hard coded the images with suffixes.
Private registries may require keys to read images from them.
Credentials can be provided in several ways:
- Configuring Nodes to Authenticate to a Private Registry
- all pods can read any configured private registries
- requires node configuration by cluster administrator
- Kubelet Credential Provider to dynamically fetch credentials for private registries
- kubelet can be configured to use credential provider exec plugin for the respective private registry.
- Pre-pulled Images
- all pods can use any images cached on a node
- requires root access to all nodes to set up
- Specifying ImagePullSecrets on a Pod
- only pods which provide own keys can access the private registry
- Vendor-specific or local extensions
- if you’re using a custom node configuration, you (or your cloud provider) can implement your mechanism for authenticating the node to the container registry.
These options are explained in more detail below.
Configuring nodes to authenticate to a private registry
Specific instructions for setting credentials depends on the container runtime and registry you chose to use. You should refer to your solution’s documentation for the most accurate information.
For an example of configuring a private container image registry, see the task. That example uses a private registry in Docker Hub.
Note: This approach is especially suitable when kubelet needs to fetch registry credentials dynamically. Most commonly used for registries provided by cloud providers where auth tokens are short-lived.
See for more details.
Interpretation of config.json
The interpretation of config.json
varies between the original Docker implementation and the Kubernetes interpretation. In Docker, the auths
keys can only specify root URLs, whereas Kubernetes allows glob URLs as well as prefix-matched paths. This means that a config.json
like this is valid:
The root URL (*my-registry.io
) is matched by using the following syntax:
Image pull operations would now pass the credentials to the CRI container runtime for every valid pattern. For example the following container image names would match successfully:
my-registry.io/images
my-registry.io/images/my-image
my-registry.io/images/another-image
sub.my-registry.io/images/my-image
a.sub.my-registry.io/images/my-image
The kubelet performs image pulls sequentially for every found credential. This means, that multiple entries in config.json
are possible, too:
If now a container specifies an image my-registry.io/images/subpath/my-image
to be pulled, then the kubelet will try to download them from both authentication sources if one of them fails.
Note: This approach is suitable if you can control node configuration. It will not work reliably if your cloud provider manages nodes and replaces them automatically.
By default, the kubelet tries to pull each image from the specified registry. However, if the imagePullPolicy
property of the container is set to IfNotPresent
or Never
, then a local image is used (preferentially or exclusively, respectively).
If you want to rely on pre-pulled images as a substitute for registry authentication, you must ensure all nodes in the cluster have the same pre-pulled images.
This can be used to preload certain images for speed or as an alternative to authenticating to a private registry.
All pods will have read access to any pre-pulled images.
Specifying imagePullSecrets on a Pod
Note: This is the recommended approach to run containers based on images in private registries.
Kubernetes supports specifying container image registry keys on a Pod. imagePullSecrets
must all be in the same namespace as the Pod. The referenced Secrets must be of type kubernetes.io/dockercfg
or kubernetes.io/dockerconfigjson
.
Creating a Secret with a Docker config
You need to know the username, registry password and client email address for authenticating to the registry, as well as its hostname. Run the following command, substituting the appropriate uppercase values:
If you already have a Docker credentials file then, rather than using the above command, you can import the credentials file as a Kubernetes Secrets.
explains how to set this up.
This is particularly useful if you are using multiple private container registries, as kubectl create secret docker-registry
creates a Secret that only works with a single private registry.
Note: Pods can only reference image pull secrets in their own namespace, so this process needs to be done one time per namespace.
Referring to an imagePullSecrets on a Pod
Now, you can create pods which reference that secret by adding an imagePullSecrets
section to a Pod definition. Each item in the imagePullSecrets
array can only reference a Secret in the same namespace.
For example:
This needs to be done for each pod that is using a private registry.
However, setting of this field can be automated by setting the imagePullSecrets in a resource.
Check Add ImagePullSecrets to a Service Account for detailed instructions.
You can use this in conjunction with a per-node . The credentials will be merged.
Use cases
- Cluster running some proprietary images which should be hidden to those outside the company, but visible to all cluster users.
- Use a hosted private registry
- Manual configuration may be required on the nodes that need to access to private registry
- Or, run an internal private registry behind your firewall with open read access.
- No Kubernetes configuration is required.
- Use a hosted container image registry service that controls image access
- It will work better with cluster autoscaling than manual node configuration.
- Or, on a cluster where changing the node configuration is inconvenient, use
imagePullSecrets
.
- Use a hosted private registry
- Cluster with proprietary images, a few of which require stricter access control.
- Ensure AlwaysPullImages admission controller is active. Otherwise, all Pods potentially have access to all images.
- Move sensitive data into a “Secret” resource, instead of packaging it in an image.
- A multi-tenant cluster where each tenant needs own private registry.
- Ensure is active. Otherwise, all Pods of all tenants potentially have access to all images.
- Run a private registry with authorization required.
- Generate registry credential for each tenant, put into secret, and populate secret to each tenant namespace.
- The tenant adds that secret to imagePullSecrets of each namespace.
If you need access to multiple registries, you can create one secret for each registry.
- Read the .
- Learn about container image garbage collection.