Deployment
Below, we briefly explain the building blocks of a Flink cluster, their purpose and available implementations. If you just want to start Flink locally, we recommend setting up a .
The figure below shows the building blocks of every Flink cluster. There is always somewhere a client running. It takes the code of the Flink applications, transforms it into a JobGraph and submits it to the JobManager.
The JobManager distributes the work onto the TaskManagers, where the actual operators (such as sources, transformations and sinks) are running.
When deploying Flink, there are often multiple options available for each building block. We have listed them in the table below the figure.
Once a job has reached a globally terminal state of either finished, failed or cancelled, the external component resources associated with the job are then cleaned up. In the event of a failure when cleaning up a resource, Flink will attempt to retry the cleanup. You can configure the retry strategy used. Reaching the maximum number of retries without succeeding will leave the job in a dirty state. Its artifacts would need to be cleaned up manually (see the section for further details). Restarting the very same job (i.e. using the same job ID) will result in the cleanup being restarted without running the job again.
There is currently an issue with the cleanup of CompletedCheckpoints that failed to be deleted while subsuming them as part of the usual CompletedCheckpoint management. These artifacts are not covered by the repeatable cleanup, i.e. they have to be deleted manually, still. This is covered by FLINK-26606.
Flink can execute applications in one of three ways:
- in Application Mode,
- in a Per-Job Mode,
- in Session Mode.
The above modes differ in:
- the cluster lifecycle and resource isolation guarantees
Application Mode
Building on this observation, the Application Mode creates a cluster per submitted application, but this time, the main()
method of the application is executed on the JobManager. Creating a cluster per application can be seen as creating a session cluster shared only among the jobs of a particular application, and torn down when the application finishes. With this architecture, the Application Mode provides the same resource isolation and load balancing guarantees as the Per-Job mode, but at the granularity of a whole application. Executing the main()
on the JobManager allows for saving the CPU cycles required, but also save the bandwidth required for downloading the dependencies locally. Furthermore, it allows for more even spread of the network load for downloading the dependencies of the applications in the cluster, as there is one JobManager per application.
Compared to the Per-Job mode, the Application Mode allows the submission of applications consisting of multiple jobs. The order of job execution is not affected by the deployment mode but by the call used to launch the job. Using , which is blocking, establishes an order and it will lead to the execution of the “next” job being postponed until “this” job finishes. Using executeAsync()
, which is non-blocking, will lead to the “next” job starting before “this” job finishes.
The Application Mode allows for multi-
execute()
applications but High-Availability is not supported in these cases. High-Availability in Application Mode is only supported for single-execute()
applications.Additionally, when any of multiple running jobs in Application Mode (submitted for example using
executeAsync()
) gets cancelled, all jobs will be stopped and the JobManager will shut down. Regular job completions (by the sources shutting down) are supported.
Per-Job Mode
Aiming at providing better resource isolation guarantees, the Per-Job mode uses the available resource provider framework (e.g. YARN, Kubernetes) to spin up a cluster for each submitted job. This cluster is available to that job only. When the job finishes, the cluster is torn down and any lingering resources (files, etc) are cleared up. This provides better resource isolation, as a misbehaving job can only bring down its own TaskManagers. In addition, it spreads the load of book-keeping across multiple JobManagers, as there is one per job. For these reasons, the Per-Job resource allocation model is the preferred mode by many production reasons.
Session Mode
Session mode assumes an already running cluster and uses the resources of that cluster to execute any submitted application. Applications executed in the same (session) cluster use, and consequently compete for, the same resources. This has the advantage that you do not pay the resource overhead of spinning up a full cluster for every submitted job. But, if one of the jobs misbehaves or brings down a TaskManager, then all jobs running on that TaskManager will be affected by the failure. This, apart from a negative impact on the job that caused the failure, implies a potential massive recovery process with all the restarting jobs accessing the filesystem concurrently and making it unavailable to other services. Additionally, having a single cluster running multiple jobs implies more load for the JobManager, who is responsible for the book-keeping of all the jobs in the cluster.
Summary
In Session Mode, the cluster lifecycle is independent of that of any job running on the cluster and the resources are shared across all jobs. The Per-Job mode pays the price of spinning up a cluster for every submitted job, but this comes with better isolation guarantees as the resources are not shared across jobs. In this case, the lifecycle of the cluster is bound to that of the job. Finally, the Application Mode creates a session cluster per application and executes the application’s main()
method on the cluster.
A number of vendors offer managed or fully hosted Flink solutions. None of these vendors are officially supported or endorsed by the Apache Flink PMC. Please refer to vendor maintained documentation on how to use these products.
AliCloud Realtime Compute
Amazon EMR
Supported Environments: AWS
Amazon Kinesis Data Analytics for Apache Flink
Supported Environments: AWS
Cloudera DataFlow
Supported Environment: AWS Azure Google On-Premise
Eventador
Supported Environment: AWS
Huawei Cloud Stream Service
Supported Environment: Huawei
Ververica Platform
Supported Environments: AliCloud AWS Azure Google On-Premise