BloomFilter索引

    • 空间效率高的概率型数据结构,用来检查一个元素是否在一个集合中。
    • 对于一个元素检测是否存在的调用,BloomFilter会告诉调用者两个结果之一:可能存在或者一定不存在。

    布隆过滤器实际上是由一个超长的二进制位数组和一系列的哈希函数组成。二进制位数组初始全部为0,当给定一个待查询的元素时,这个元素会被一系列哈希函数计算映射出一系列的值,所有的值在位数组的偏移量处置为1。

    下图所示出一个 m=18, k=3 (m是该Bit数组的大小,k是Hash函数的个数)的Bloom Filter示例。集合中的 x、y、z 三个元素通过 3 个不同的哈希函数散列到位数组中。当查询元素w时,通过Hash函数计算之后因为有一个比特为0,因此w不在该集合中。

    那么怎么判断某个元素是否在集合中呢?同样是这个元素经过哈希函数计算后得到所有的偏移位置,若这些位置全都为1,则判断这个元素在这个集合中,若有一个不为1,则判断这个元素不在这个集合中。就是这么简单!

    因此,HBase提供了布隆过滤器,它允许你对存储在每个数据块的数据做一个反向测试。当某行被请求时,通过布隆过滤器先检查该行是否不在这个数据块,布隆过滤器要么确定回答该行不在,要么回答它不知道。这就是为什么我们称它是反向测试。布隆过滤器同样也可以应用到行里的单元上,当访问某列标识符时可以先使用同样的反向测试。

    但布隆过滤器也不是没有代价。存储这个额外的索引层次会占用额外的空间。布隆过滤器随着它们的索引对象数据增长而增长,所以行级布隆过滤器比列标识符级布隆过滤器占用空间要少。当空间不是问题时,它们可以帮助你榨干系统的性能潜力。 Doris的BloomFilter索引可以通过建表的时候指定,或者通过表的ALTER操作来完成。Bloom Filter本质上是一种位图结构,用于快速的判断一个给定的值是否在一个集合中。这种判断会产生小概率的误判。即如果返回false,则一定不在这个集合内。而如果范围true,则有可能在这个集合内。

    BloomFilter索引也是以Block为粒度创建的。每个Block中,指定列的值作为一个集合生成一个BloomFilter索引条目,用于在查询是快速过滤不满足条件的数据。

    下面我们通过实例来看看Doris怎么创建BloomFilter索引。

    创建BloomFilter索引

    查看我们在表上建立的BloomFilter索引是使用:

    删除BloomFilter索引

    删除索引即为将索引列从bloom_filter_columns属性中移除:

    修改索引即为修改表的bloom_filter_columns属性:

    Doris BloomFilter使用场景

    满足以下几个条件时可以考虑对某列建立Bloom Filter 索引:

    1. 首先BloomFilter适用于非前缀过滤。
    2. 查询会根据该列高频过滤,而且查询条件大多是 in 和 = 过滤。
    3. 不同于Bitmap, BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如 “性别” 列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义。
    1. 不支持对Tinyint、Float、Double 类型的列建Bloom Filter索引。
    2. 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看。