Permissions are granted from the CLI when running the command. User code will often assume its own set of required permissions, but there is no guarantee during execution that the set of granted permissions will align with this.
In some cases, ensuring a fault-tolerant program requires a way to interact with the permission system at runtime.
On the CLI, read permission for /foo/bar
is represented as
--allow-read=/foo/bar
. In runtime JS, it is represented as the following:
Other examples:
// Global write permission.
const desc1 = { name: "write" } as const;
// Write permission to `$PWD/foo/bar`.
const desc2 = { name: "write", path: "foo/bar" } as const;
// Global net permission.
const desc3 = { name: "net" } as const;
// Net permission to 127.0.0.1:8000.
const desc4 = { name: "net", host: "127.0.0.1:8000" } as const;
// High-resolution time permission.
const desc5 = { name: "hrtime" } as const;
Query permissions
Check, by descriptor, if a permission is granted or not.
const desc1 = { name: "read", path: "/foo" } as const;
console.log(await Deno.permissions.query(desc1));
// PermissionStatus { state: "granted" }
const desc2 = { name: "read", path: "/foo/bar" } as const;
console.log(await Deno.permissions.query(desc2));
// PermissionStatus { state: "granted" }
const desc3 = { name: "read", path: "/bar" } as const;
console.log(await Deno.permissions.query(desc3));
// PermissionStatus { state: "prompt" }
Permission strength
The intuitive understanding behind the result of the second query in
is that read access was granted to
/foo
and /foo/bar
is within /foo
so /foo/bar
is allowed to be read.
We can also say that desc1
is
stronger than
desc2
. This means that for any set of CLI-granted permissions:
- If
desc1
queries to{ state: "granted" }
then so mustdesc2
. - If
desc2
queries to{ state: "denied" }
then so mustdesc1
.
More examples:
Request an ungranted permission from the user via CLI prompt.
// deno run --unstable main.ts
const desc1 = { name: "read", path: "/foo" } as const;
const status1 = await Deno.permissions.request(desc1);
// ⚠️ Deno requests read access to "/foo". Grant? [g/d (g = grant, d = deny)] g
console.log(status1);
const desc2 = { name: "read", path: "/bar" } as const;
const status2 = await Deno.permissions.request(desc2);
// ⚠️ Deno requests read access to "/bar". Grant? [g/d (g = grant, d = deny)] d
console.log(status2);
// PermissionStatus { state: "denied" }
If the current permission state is “prompt”, a prompt will appear on the user’s
terminal asking them if they would like to grant the request. The request for
desc1
was granted so its new status is returned and execution will continue as
if --allow-read=/foo
was specified on the CLI. The request for desc2
was
denied so its permission state is downgraded from “prompt” to “denied”.
Revoke permissions
Downgrade a permission from “granted” to “prompt”.
// deno run --unstable --allow-read=/foo main.ts
const desc = { name: "read", path: "/foo" } as const;
console.log(await Deno.permissions.revoke(desc));
// PermissionStatus { state: "prompt" }
However, what happens when you try to revoke a permission which is partial to one granted on the CLI?
It was not revoked.
To understand this behaviour, imagine that Deno stores an internal set of
explicitly granted permission descriptors. Specifying --allow-read=/foo,/bar
on the CLI initializes this set to:
[
{ name: "read", path: "/foo" },
{ name: "read", path: "/bar" },
];
Granting a runtime request for { name: "write", path: "/foo" }
updates the set
to:
[
{ name: "read", path: "/foo" },
{ name: "read", path: "/bar" },
{ name: "write", path: "/foo" },
];