In some cases, ensuring a fault-tolerant program requires a way to interact with the permission system at runtime.
On the CLI, read permission for /foo/bar
is represented as
--allow-read=/foo/bar
. In runtime JS, it is represented as the following:
Other examples:
// Global write permission.
const desc1 = { name: "write" } as const;
// Write permission to `$PWD/foo/bar`.
const desc2 = { name: "write", path: "foo/bar" } as const;
// Global net permission.
const desc3 = { name: "net" } as const;
// Net permission to 127.0.0.1:8000.
const desc4 = { name: "net", host: "127.0.0.1:8000" } as const;
// High-resolution time permission.
const desc5 = { name: "hrtime" } as const;
Query permissions
Check, by descriptor, if a permission is granted or not.
const desc1 = { name: "read", path: "/foo" } as const;
console.log(await Deno.permissions.query(desc1));
// PermissionStatus { state: "granted" }
const desc2 = { name: "read", path: "/foo/bar" } as const;
console.log(await Deno.permissions.query(desc2));
// PermissionStatus { state: "granted" }
const desc3 = { name: "read", path: "/bar" } as const;
console.log(await Deno.permissions.query(desc3));
// PermissionStatus { state: "prompt" }
A permission state can be either “granted”, “prompt” or “denied”. Permissions
which have been granted from the CLI will query to { state: "granted" }
. Those
which have not been granted query to { state: "prompt" }
by default, while
{ state: "denied" }
reserved for those which have been explicitly refused.
This will come up in Request permissions.
Permission strength
We can also say that desc1
is
stronger than
desc2
. This means that for any set of CLI-granted permissions:
- If
desc1
queries to{ state: "granted" }
then so mustdesc2
. - If
desc2
queries to{ state: "denied" }
then so mustdesc1
.
More examples:
Request an ungranted permission from the user via CLI prompt.
// deno run main.ts
const desc1 = { name: "read", path: "/foo" } as const;
const status1 = await Deno.permissions.request(desc1);
// ⚠️ Deno requests read access to "/foo". Grant? [y/n (y = yes allow, n = no deny)] y
console.log(status1);
const desc2 = { name: "read", path: "/bar" } as const;
const status2 = await Deno.permissions.request(desc2);
// ⚠️ Deno requests read access to "/bar". Grant? [y/n (y = yes allow, n = no deny)] n
console.log(status2);
// PermissionStatus { state: "denied" }
If the current permission state is “prompt”, a prompt will appear on the user’s
terminal asking them if they would like to grant the request. The request for
desc1
was granted so its new status is returned and execution will continue as
if --allow-read=/foo
was specified on the CLI. The request for desc2
was
denied so its permission state is downgraded from “prompt” to “denied”.
If the current permission state is already either “granted” or “denied”, the request will behave like a query and just return the current status. This prevents prompts both for already granted permissions and previously denied requests.
Revoke permissions
// deno run --allow-read=/foo main.ts
const desc = { name: "read", path: "/foo" } as const;
console.log(await Deno.permissions.revoke(desc));
// PermissionStatus { state: "prompt" }
However, what happens when you try to revoke a permission which is partial to one granted on the CLI?
It was not revoked.
To understand this behaviour, imagine that Deno stores an internal set of
explicitly granted permission descriptors. Specifying --allow-read=/foo,/bar
on the CLI initializes this set to:
[
{ name: "read", path: "/foo" },
{ name: "read", path: "/bar" },
];
Granting a runtime request for { name: "write", path: "/foo" }
updates the set
to:
[
{ name: "read", path: "/foo" },
{ name: "read", path: "/bar" },
{ name: "write", path: "/foo" },
];
Deno’s permission revocation algorithm works by removing every element from this
set which the argument permission descriptor is stronger than. So to ensure
desc
is no longer granted, pass an argument descriptor stronger than
whichever explicitly granted permission descriptor is stronger than .