Apache Kafka ingestion

    This service is provided in the core Apache Druid extension (see Including Extensions).

    This page contains reference documentation for Apache Kafka-based ingestion. For a walk-through instead, check out the tutorial.

    The Kafka indexing service requires that the druid-kafka-indexing-service extension be loaded on both the Overlord and the MiddleManagers. A supervisor for a dataSource is started by submitting a supervisor spec via HTTP POST to http://<OVERLORD_IP>:<OVERLORD_PORT>/druid/indexer/v1/supervisor, for example:

    A sample supervisor spec is shown below:

    FieldTypeDescriptionRequired
    topicStringThe Kafka topic to read from. This must be a specific topic as topic patterns are not supported.yes
    inputFormatObjectinputFormat to specify how to parse input data. See for details about specifying the input format.yes
    consumerPropertiesMap<String, Object>A map of properties to be passed to the Kafka consumer. See next section for more information.yes
    pollTimeoutLongThe length of time to wait for the Kafka consumer to poll records, in millisecondsno (default == 100)
    replicasIntegerThe number of replica sets, where 1 means a single set of tasks (no replication). Replica tasks will always be assigned to different workers to provide resiliency against process failure.no (default == 1)
    taskCountIntegerThe maximum number of reading tasks in a replica set. This means that the maximum number of reading tasks will be taskCount * replicas and the total number of tasks (reading + publishing) will be higher than this. See below for more details. The number of reading tasks will be less than taskCount if taskCount > {numKafkaPartitions}.no (default == 1)
    taskDurationISO8601 PeriodThe length of time before tasks stop reading and begin publishing their segment.no (default == PT1H)
    startDelayISO8601 PeriodThe period to wait before the supervisor starts managing tasks.no (default == PT5S)
    periodISO8601 PeriodHow often the supervisor will execute its management logic. Note that the supervisor will also run in response to certain events (such as tasks succeeding, failing, and reaching their taskDuration) so this value specifies the maximum time between iterations.no (default == PT30S)
    useEarliestOffsetBooleanIf a supervisor is managing a dataSource for the first time, it will obtain a set of starting offsets from Kafka. This flag determines whether it retrieves the earliest or latest offsets in Kafka. Under normal circumstances, subsequent tasks will start from where the previous segments ended so this flag will only be used on first run.no (default == false)
    completionTimeoutISO8601 PeriodThe length of time to wait before declaring a publishing task as failed and terminating it. If this is set too low, your tasks may never publish. The publishing clock for a task begins roughly after taskDuration elapses.no (default == PT30M)
    lateMessageRejectionStartDateTimeISO8601 DateTimeConfigure tasks to reject messages with timestamps earlier than this date time; for example if this is set to 2016-01-01T11:00Z and the supervisor creates a task at 2016-01-01T12:00Z, messages with timestamps earlier than 2016-01-01T11:00Z will be dropped. This may help prevent concurrency issues if your data stream has late messages and you have multiple pipelines that need to operate on the same segments (e.g. a realtime and a nightly batch ingestion pipeline).no (default == none)
    lateMessageRejectionPeriodISO8601 PeriodConfigure tasks to reject messages with timestamps earlier than this period before the task was created; for example if this is set to PT1H and the supervisor creates a task at 2016-01-01T12:00Z, messages with timestamps earlier than 2016-01-01T11:00Z will be dropped. This may help prevent concurrency issues if your data stream has late messages and you have multiple pipelines that need to operate on the same segments (e.g. a realtime and a nightly batch ingestion pipeline). Please note that only one of lateMessageRejectionPeriod or lateMessageRejectionStartDateTime can be specified.no (default == none)
    earlyMessageRejectionPeriodISO8601 PeriodConfigure tasks to reject messages with timestamps later than this period after the task reached its taskDuration; for example if this is set to PT1H, the taskDuration is set to PT1H and the supervisor creates a task at 2016-01-01T12:00Z, messages with timestamps later than 2016-01-01T14:00Z will be dropped. Note: Tasks sometimes run past their task duration, for example, in cases of supervisor failover. Setting earlyMessageRejectionPeriod too low may cause messages to be dropped unexpectedly whenever a task runs past its originally configured task duration.no (default == none)

    More on consumerProperties

    This must contain a property bootstrap.servers with a list of Kafka brokers in the form: <BROKER_1>:<PORT_1>,<BROKER_2>:<PORT_2>,.... By default, isolation.level is set to read_committed. It should be set to read_uncommitted if you don’t want Druid to consume only committed transactions or working with older versions of Kafka servers with no Transactions support.

    There are few cases that require fetching few/all of consumer properties at runtime e.g. when bootstrap.servers is not known upfront or not static, to enable SSL connections users might have to provide passwords for keystore, truststore and key secretly. For such consumer properties, user can implement a to supply them at runtime, by adding druid.dynamic.config.provider\={"type": "<registered_dynamic_config_provider_name>", ...} in consumerProperties map.

    Note: In 0.20.0 or older Druid versions, for SSL connections, the keystore, truststore and key passwords can also be provided as a Password Provider. This is deprecated.

    Specifying data format

    Kafka indexing service supports both inputFormat and to specify the data format. The inputFormat is a new and recommended way to specify the data format for Kafka indexing service, but unfortunately, it doesn’t support all data formats supported by the legacy parser. (They will be supported in the future.)

    The supported inputFormats include csv, , and json. You can also read , , and formats using parser.

    KafkaSupervisorTuningConfig

    The tuningConfig is optional and default parameters will be used if no tuningConfig is specified.

    IndexSpec

    FieldTypeDescriptionRequired
    bitmapObjectCompression format for bitmap indexes. Should be a JSON object. See Bitmap types below for options.no (defaults to Roaring)
    dimensionCompressionStringCompression format for dimension columns. Choose from LZ4, LZF, or uncompressed.no (default == LZ4)
    metricCompressionStringCompression format for primitive type metric columns. Choose from LZ4, LZF, uncompressed, or none.no (default == LZ4)
    longEncodingStringEncoding format for metric and dimension columns with type long. Choose from auto or longs. auto encodes the values using offset or lookup table depending on column cardinality, and store them with variable size. stores the value as is with 8 bytes each.no (default == longs)
    Bitmap types

    For Roaring bitmaps:

    For Concise bitmaps:

    FieldTypeDescriptionRequired
    typeStringMust be concise.yes

    SegmentWriteOutMediumFactory

    Getting Supervisor Status Report

    GET /druid/indexer/v1/supervisor/<supervisorId>/status returns a snapshot report of the current state of the tasks managed by the given supervisor. This includes the latest offsets as reported by Kafka, the consumer lag per partition, as well as the aggregate lag of all partitions. The consumer lag per partition may be reported as negative values if the supervisor has not received a recent latest offset response from Kafka. The aggregate lag value will always be >= 0.

    The status report also contains the supervisor’s state and a list of recently thrown exceptions (reported as recentErrors, whose max size can be controlled using the druid.supervisor.maxStoredExceptionEvents configuration). There are two fields related to the supervisor’s state - state and detailedState. The state field will always be one of a small number of generic states that are applicable to any type of supervisor, while the detailedState field will contain a more descriptive, implementation-specific state that may provide more insight into the supervisor’s activities than the generic state field.

    The list of possible state values are: [PENDING, RUNNING, SUSPENDED, STOPPING, UNHEALTHY_SUPERVISOR, UNHEALTHY_TASKS]

    The list of detailedState values and their corresponding state mapping is as follows:

    Detailed StateCorresponding StateDescription
    UNHEALTHY_SUPERVISORUNHEALTHY_SUPERVISORThe supervisor has encountered errors on the past druid.supervisor.unhealthinessThreshold iterations
    UNHEALTHY_TASKSUNHEALTHY_TASKSThe last druid.supervisor.taskUnhealthinessThreshold tasks have all failed
    UNABLE_TO_CONNECT_TO_STREAMUNHEALTHY_SUPERVISORThe supervisor is encountering connectivity issues with Kafka and has not successfully connected in the past
    LOST_CONTACT_WITH_STREAMUNHEALTHY_SUPERVISORThe supervisor is encountering connectivity issues with Kafka but has successfully connected in the past
    PENDING (first iteration only)PENDINGThe supervisor has been initialized and hasn’t started connecting to the stream
    CONNECTING_TO_STREAM (first iteration only)RUNNINGThe supervisor is trying to connect to the stream and update partition data
    DISCOVERING_INITIAL_TASKS (first iteration only)RUNNINGThe supervisor is discovering already-running tasks
    CREATING_TASKS (first iteration only)RUNNINGThe supervisor is creating tasks and discovering state
    RUNNINGRUNNINGThe supervisor has started tasks and is waiting for taskDuration to elapse
    SUSPENDEDSUSPENDEDThe supervisor has been suspended
    STOPPINGSTOPPINGThe supervisor is stopping

    On each iteration of the supervisor’s run loop, the supervisor completes the following tasks in sequence:

    1. Fetch the list of partitions from Kafka and determine the starting offset for each partition (either based on the last processed offset if continuing, or starting from the beginning or ending of the stream if this is a new topic).
    2. Discover any running indexing tasks that are writing to the supervisor’s datasource and adopt them if they match the supervisor’s configuration, else signal them to stop.
    3. Send a status request to each supervised task to update our view of the state of the tasks under our supervision.
    4. Handle tasks that have exceeded taskDuration and should transition from the reading to publishing state.
    5. Handle tasks that have finished publishing and signal redundant replica tasks to stop.
    6. Handle tasks that have failed and clean up the supervisor’s internal state.
    7. Compare the list of healthy tasks to the requested taskCount and replicas configurations and create additional tasks if required.

    The detailedState field will show additional values (those marked with “first iteration only”) the first time the supervisor executes this run loop after startup or after resuming from a suspension. This is intended to surface initialization-type issues, where the supervisor is unable to reach a stable state (perhaps because it can’t connect to Kafka, it can’t read from the Kafka topic, or it can’t communicate with existing tasks). Once the supervisor is stable - that is, once it has completed a full execution without encountering any issues - detailedState will show a RUNNING state until it is stopped, suspended, or hits a failure threshold and transitions to an unhealthy state.

    Getting Supervisor Ingestion Stats Report

    GET /druid/indexer/v1/supervisor/<supervisorId>/stats returns a snapshot of the current ingestion row counters for each task being managed by the supervisor, along with moving averages for the row counters.

    See for more information.

    GET /druid/indexer/v1/supervisor/<supervisorId>/health returns 200 OK if the supervisor is healthy and 503 Service Unavailable if it is unhealthy. Healthiness is determined by the supervisor’s state (as returned by the /status endpoint) and the druid.supervisor.* Overlord configuration thresholds.

    Updating Existing Supervisors

    POST /druid/indexer/v1/supervisor can be used to update existing supervisor spec. Calling this endpoint when there is already an existing supervisor for the same dataSource will cause:

    • The running supervisor to signal its managed tasks to stop reading and begin publishing.
    • The running supervisor to exit.

    Seamless schema migrations can thus be achieved by simply submitting the new schema using this endpoint.

    Suspending and Resuming Supervisors

    You can suspend and resume a supervisor using POST /druid/indexer/v1/supervisor/<supervisorId>/suspend and POST /druid/indexer/v1/supervisor/<supervisorId>/resume, respectively.

    Note that the supervisor itself will still be operating and emitting logs and metrics, it will just ensure that no indexing tasks are running until the supervisor is resumed.

    Resetting Supervisors

    Use care when using this operation! Resetting the supervisor may cause Kafka messages to be skipped or read twice, resulting in missing or duplicate data.

    The reason for using this operation is to recover from a state in which the supervisor ceases operating due to missing offsets. The indexing service keeps track of the latest persisted Kafka offsets in order to provide exactly-once ingestion guarantees across tasks. Subsequent tasks must start reading from where the previous task completed in order for the generated segments to be accepted. If the messages at the expected starting offsets are no longer available in Kafka (typically because the message retention period has elapsed or the topic was removed and re-created) the supervisor will refuse to start and in flight tasks will fail. This operation enables you to recover from this condition.

    Note that the supervisor must be running for this endpoint to be available.

    The POST /druid/indexer/v1/supervisor/<supervisorId>/terminate operation terminates a supervisor and causes all associated indexing tasks managed by this supervisor to immediately stop and begin publishing their segments. This supervisor will still exist in the metadata store and it’s history may be retrieved with the supervisor history API, but will not be listed in the ‘get supervisors’ API response nor can it’s configuration or status report be retrieved. The only way this supervisor can start again is by submitting a functioning supervisor spec to the create API.

    Capacity Planning

    Kafka indexing tasks run on MiddleManagers and are thus limited by the resources available in the MiddleManager cluster. In particular, you should make sure that you have sufficient worker capacity (configured using the druid.worker.capacity property) to handle the configuration in the supervisor spec. Note that worker capacity is shared across all types of indexing tasks, so you should plan your worker capacity to handle your total indexing load (e.g. batch processing, realtime tasks, merging tasks, etc.). If your workers run out of capacity, Kafka indexing tasks will queue and wait for the next available worker. This may cause queries to return partial results but will not result in data loss (assuming the tasks run before Kafka purges those offsets).

    A running task will normally be in one of two states: reading or publishing. A task will remain in reading state for taskDuration, at which point it will transition to publishing state. A task will remain in publishing state for as long as it takes to generate segments, push segments to deep storage, and have them be loaded and served by a Historical process (or until completionTimeout elapses).

    The number of reading tasks is controlled by replicas and taskCount. In general, there will be replicas * taskCount reading tasks, the exception being if taskCount > {numKafkaPartitions} in which case {numKafkaPartitions} tasks will be used instead. When taskDuration elapses, these tasks will transition to publishing state and replicas * taskCount new reading tasks will be created. Therefore to allow for reading tasks and publishing tasks to run concurrently, there should be a minimum capacity of:

    This value is for the ideal situation in which there is at most one set of tasks publishing while another set is reading. In some circumstances, it is possible to have multiple sets of tasks publishing simultaneously. This would happen if the time-to-publish (generate segment, push to deep storage, loaded on Historical) > taskDuration. This is a valid scenario (correctness-wise) but requires additional worker capacity to support. In general, it is a good idea to have taskDuration be large enough that the previous set of tasks finishes publishing before the current set begins.

    Supervisor Persistence

    When a supervisor spec is submitted via the POST /druid/indexer/v1/supervisor endpoint, it is persisted in the configured metadata database. There can only be a single supervisor per dataSource, and submitting a second spec for the same dataSource will overwrite the previous one.

    When an Overlord gains leadership, either by being started or as a result of another Overlord failing, it will spawn a supervisor for each supervisor spec in the metadata database. The supervisor will then discover running Kafka indexing tasks and will attempt to adopt them if they are compatible with the supervisor’s configuration. If they are not compatible because they have a different ingestion spec or partition allocation, the tasks will be killed and the supervisor will create a new set of tasks. In this way, the supervisors are persistent across Overlord restarts and fail-overs.

    A supervisor is stopped via the POST /druid/indexer/v1/supervisor/<supervisorId>/terminate endpoint. This places a tombstone marker in the database (to prevent the supervisor from being reloaded on a restart) and then gracefully shuts down the currently running supervisor. When a supervisor is shut down in this way, it will instruct its managed tasks to stop reading and begin publishing their segments immediately. The call to the shutdown endpoint will return after all tasks have been signaled to stop but before the tasks finish publishing their segments.

    Schema/Configuration Changes

    Schema and configuration changes are handled by submitting the new supervisor spec via the same POST /druid/indexer/v1/supervisor endpoint used to initially create the supervisor. The Overlord will initiate a graceful shutdown of the existing supervisor which will cause the tasks being managed by that supervisor to stop reading and begin publishing their segments. A new supervisor will then be started which will create a new set of tasks that will start reading from the offsets where the previous now-publishing tasks left off, but using the updated schema. In this way, configuration changes can be applied without requiring any pause in ingestion.

    On the Subject of Segments

    Each Kafka Indexing Task puts events consumed from Kafka partitions assigned to it in a single segment for each segment granular interval until maxRowsPerSegment, maxTotalRows or intermediateHandoffPeriod limit is reached, at this point a new partition for this segment granularity is created for further events. Kafka Indexing Task also does incremental hand-offs which means that all the segments created by a task will not be held up till the task duration is over. As soon as maxRowsPerSegment, maxTotalRows or intermediateHandoffPeriod limit is hit, all the segments held by the task at that point in time will be handed-off and new set of segments will be created for further events. This means that the task can run for longer durations of time without accumulating old segments locally on Middle Manager processes and it is encouraged to do so.