Antrea Network Policy CRDs
- Tier
- Antrea ClusterNetworkPolicy
- Antrea-native Policy ordering based on priorities
- Advanced peer selection mechanisms of Antrea-native Policies
- ClusterGroup
- Notes and constraints
Summary
Starting with Antrea v1.0, Antrea-native policies are enabled by default, which means that no additional configuration is required in order to use the Antrea-native policy CRDs.
Tier
Antrea supports grouping Antrea-native policy CRDs together in a tiered fashion to provide a hierarchy of security policies. This is achieved by setting the field when defining an Antrea-native policy CRD (e.g. an Antrea ClusterNetworkPolicy object) to the appropriate Tier name. Each Tier has a priority associated with it, which determines its relative order among other Tiers.
Note: K8s NetworkPolicies will be enforced once all policies in all Tiers (except for the baseline Tier) have been enforced. For more information, refer to the following
Creating Tiers as CRDs allows users the flexibility to create and delete Tiers as per their preference i.e. not be bound to 5 static tiering options as was the case initially.
An example Tier might look like this:
Tiers have the following characteristics:
- Policies can associate themselves with an existing Tier by setting the
tier
field in an Antrea NetworkPolicy CRD spec to the Tier’s name. - A Tier must exist before an Antrea-native policy can reference it.
- Policies associated with higher ordered (low
priority
value) Tiers are enforced first. - No two Tiers can be created with the same priority.
- Updating the Tier’s
priority
field is unsupported. - Deleting Tier with existing references from policies is not allowed.
Static tiers
Antrea release 0.9.x introduced support for 5 static tiers. These static tiers have been removed in favor of Tier CRDs as mentioned in the previous section. On startup, antrea-controller will create 5 static, read-only Tier CRD resources corresponding to the static tiers for default consumption, as well as a “baseline” Tier CRD object, that will be enforced after developer-created K8s NetworkPolicies. The details for these Tiers are shown below:
Emergency -> Tier name "emergency" with priority "50"
SecurityOps -> Tier name "securityops" with priority "100"
NetworkOps -> Tier name "networkops" with priority "150"
Platform -> Tier name "platform" with priority "200"
Application -> Tier name "application" with priority "250"
Baseline -> Tier name "baseline" with priority "253"
Any Antrea-native policy CRD referencing a static tier in its spec will now internally reference the corresponding Tier resource, thus maintaining the order of enforcement.
The static Tier CRD Resources are created as follows in the relative order of precedence compared to K8s NetworkPolicies:
Emergency > SecurityOps > NetworkOps > Platform > Application > K8s NetworkPolicy > Baseline
Thus, all Antrea-native Policy resources associated with the “emergency” Tier will be enforced before any Antrea-native Policy resource associated with any other Tiers, until a match occurs, in which case the policy rule’s action
will be applied. Any Antrea-native Policy resource without a tier
name set in its spec will be associated with the “application” Tier. Policies associated with the first 5 static, read-only Tiers, as well as with all the custom Tiers created with a priority value lower than 250 (priority values greater than or equal to 250 are not allowed for custom Tiers), will be enforced before K8s NetworkPolicies.
Policies created in the “baseline” Tier, on the other hand, will have lower precedence than developer-created K8s NetworkPolicies, which comes in handy when administrators want to enforce baseline policies like “default-deny inter-namespace traffic” for some specific Namespace, while still allowing individual developers to lift the restriction if needed using K8s NetworkPolicies.
Note that baseline policies cannot counteract the isolated Pod behavior provided by K8s NetworkPolicies. To read more about this Pod isolation behavior, refer to this document. If a Pod becomes isolated because a K8s NetworkPolicy is applied to it, and the policy does not explicitly allow communications with another Pod, this behavior cannot be changed by creating an Antrea-native policy with an “allow” action in the “baseline” Tier. For this reason, it generally does not make sense to create policies in the “baseline” Tier with the “allow” action.
kubectl commands for Tier
The following kubectl
commands can be used to retrieve Tier resources:
# Use long name
kubectl get tiers
# Use long name with API Group
kubectl get tiers.crd.antrea.io
# Use short name
kubectl get tr
# Use short name with API Group
kubectl get tr.crd.antrea.io
# Sort output by Tier priority
kubectl get tiers --sort-by=.spec.priority
All the above commands produce output similar to what is shown below:
NAME PRIORITY AGE
emergency 50 27h
securityops 100 27h
networkops 150 27h
platform 200 27h
application 250 27h
Antrea ClusterNetworkPolicy (ACNP), one of the two Antrea-native policy CRDs introduced, is a specification of how workloads within a cluster communicate with each other and other external endpoints. The ClusterNetworkPolicy is supposed to aid cluster admins to configure the security policy for the cluster, unlike K8s NetworkPolicy, which is aimed towards developers to secure their apps and affects Pods within the Namespace in which the K8s NetworkPolicy is created. Rules belonging to ClusterNetworkPolicies are enforced before any rule belonging to a K8s NetworkPolicy.
The Antrea ClusterNetworkPolicy resource
Example ClusterNetworkPolicies might look like these:
ACNP with stand-alone selectors
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-with-stand-alone-selectors
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
role: db
- namespaceSelector:
matchLabels:
env: prod
ingress:
- action: Allow
from:
- podSelector:
matchLabels:
role: frontend
- podSelector:
matchLabels:
role: nondb
namespaceSelector:
matchLabels:
role: db
ports:
- protocol: TCP
port: 8080
endPort: 9000
- protocol: TCP
port: 6379
name: AllowFromFrontend
enableLogging: false
egress:
- action: Drop
to:
- ipBlock:
cidr: 10.0.10.0/24
ports:
- protocol: TCP
port: 5978
name: DropToThirdParty
enableLogging: true
ACNP with ClusterGroup reference
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-with-cluster-groups
spec:
priority: 8
tier: securityops
appliedTo:
- group: "test-cg-with-db-selector" # defined separately with a ClusterGroup resource
ingress:
- action: Allow
from:
- group: "test-cg-with-frontend-selector" # defined separately with a ClusterGroup resource
ports:
- protocol: TCP
port: 8080
endPort: 9000
- protocol: TCP
port: 6379
name: AllowFromFrontend
enableLogging: false
egress:
- action: Drop
to:
- group: "test-cg-with-ip-block" # defined separately with a ClusterGroup resource
ports:
- protocol: TCP
port: 5978
name: DropToThirdParty
enableLogging: true
ACNP for complete Pod isolation in selected Namespaces
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: isolate-all-pods-in-namespace
spec:
priority: 1
tier: securityops
appliedTo:
- namespaceSelector:
matchLabels:
app: no-network-access-required
ingress:
- action: Drop # For all Pods in those Namespaces, drop and log all ingress traffic from anywhere
name: drop-all-ingress
enableLogging: true
egress:
- action: Drop # For all Pods in those Namespaces, drop and log all egress traffic towards anywhere
name: drop-all-egress
enableLogging: true
ACNP for strict Namespace isolation
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: strict-ns-isolation
spec:
priority: 5
tier: securityops
appliedTo:
- namespaceSelector: # Selects all non-system Namespaces in the cluster
matchExpressions:
- {key: kubernetes.io/metadata.name, operator: NotIn, values: [kube-system]}
ingress:
- action: Pass
from:
- namespaces:
match: Self # Skip ACNP evaluation for traffic from Pods in the same Namespace
name: PassFromSameNS
enableLogging: false
- action: Drop
from:
- namespaceSelector: {} # Drop from Pods from all other Namespaces
name: DropFromAllOtherNS
enableLogging: true
egress:
- action: Pass
to:
- namespaces:
match: Self # Skip ACNP evaluation for traffic to Pods in the same Namespace
name: PassToSameNS
enableLogging: false
- action: Drop
to:
- namespaceSelector: {} # Drop to Pods from all other Namespaces
name: DropToAllOtherNS
enableLogging: true
ACNP for default zero-trust cluster security posture
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: default-cluster-deny
spec:
priority: 1
tier: baseline
appliedTo:
- namespaceSelector: {} # Selects all Namespaces in the cluster
ingress:
- action: Drop
egress:
- action: Drop
ACNP for toServices rule
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-drop-to-services
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
namespaceSelector:
matchLabels:
env: prod
egress:
- action: Drop
toServices:
- name: svcName
namespace: svcNamespace
name: DropToServices
enableLogging: true
ACNP for ICMP traffic
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-reject-ping-request
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
role: server
namespaceSelector:
matchLabels:
env: prod
egress:
- action: Reject
protocols:
- icmp:
icmpType: 8
icmpCode: 0
name: DropPingRequest
enableLogging: true
ACNP for IGMP traffic
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-with-igmp-drop
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
app: mcjoin6
ingress:
- action: Drop
protocols:
- igmp:
igmpType: 0x11
groupAddress: 224.0.0.1
name: dropIGMPQuery
egress:
- action: Drop
protocols:
- igmp:
igmpType: 0x16
groupAddress: 225.1.2.3
name: dropIGMPReport
ACNP for multicast egress traffic
ACNP for HTTP traffic
apiVersion: crd.antrea.io/v1alpha1
kind: NetworkPolicy
metadata:
name: ingress-allow-http-request-to-api-v2
spec:
priority: 5
tier: application
appliedTo:
- podSelector:
matchLabels:
app: web
ingress:
- name: allow-http # Allow inbound HTTP GET requests to "/api/v2" from Pods with app=client label.
action: Allow # All other traffic from these Pods will be automatically dropped, and subsequent rules will not be considered.
from:
- podSelector:
matchLabels:
app: client
l7Protocols:
- http:
path: "/api/v2/*"
host: "foo.bar.com"
method: "GET"
- name: drop-other # Drop all other inbound traffic (i.e., from Pods without the app=client label or from external clients).
action: Drop
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: allow-web-access-to-internal-domain
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
egress-restriction: internal-domain-only
egress:
- name: allow-dns # Allow outbound DNS requests.
action: Allow
ports:
- protocol: TCP
port: 53
- protocol: UDP
port: 53
- name: allow-http-only # Allow outbound HTTP requests towards foo.bar.com.
action: Allow # As the rule's "to" and "ports" are empty, which means it selects traffic to any network
l7Protocols: # peer's any port using any transport protocol, all outbound HTTP requests towards other
- http: # domains and non-HTTP requests will be automatically dropped, and subsequent rules will
host: "*.bar.com" # not be considered.
Please refer to Antrea Layer 7 NetworkPolicy for extra information.
spec: The ClusterNetworkPolicy spec
has all the information needed to define a cluster-wide security policy.
appliedTo: The appliedTo
field at the policy level specifies the grouping criteria of Pods to which the policy applies to. Pods can be selected cluster-wide using podSelector
. If set with a namespaceSelector
, all Pods from Namespaces selected by the namespaceSelector will be selected. Specific Pods from specific Namespaces can be selected by providing both a podSelector
and a namespaceSelector
in the same appliedTo
entry. The appliedTo
field can also reference a ClusterGroup resource by setting the ClusterGroup’s name in group
field in place of the stand-alone selectors. The appliedTo
field can also reference a Service by setting the Service’s name and Namespace in service
field in place of the stand-alone selectors. Only a NodePort Service can be referred by this field. More details can be found in the section. IPBlock cannot be set in the appliedTo
field. An IPBlock ClusterGroup referenced in an appliedTo
field will be ignored, and the policy will have no effect. This appliedTo
field must not be set, if appliedTo
per rule is used.
In the first example, the policy applies to Pods, which either match the labels “role=db” in all the Namespaces, or are from Namespaces which match the labels “env=prod”. The policy applies to all network endpoints selected by the “test-cg-with-db-selector” ClusterGroup. The third example policy applies to all Pods in the Namespaces that matches label “app=no-network-access-required”. `appliedTo’ also supports ServiceAccount based selection. This allows users using ServiceAccount to select Pods. More details can be found in the section.
priority: The priority
field determines the relative priority of the policy among all ClusterNetworkPolicies in the given cluster. This field is mandatory. A lower priority value indicates higher precedence. Priority values can range from 1.0 to 10000.0. Note: Policies with the same priorities will be enforced indeterministically. Users should therefore take care to use priorities to ensure the behavior they expect.
tier: The tier
field associates an ACNP to an existing Tier. The tier
field can be set with the name of the Tier CRD to which this policy must be associated with. If not set, the ACNP is associated with the lowest priority default tier i.e. the “application” Tier.
action: Each ingress or egress rule of a ClusterNetworkPolicy must have the action
field set. As of now, the available actions are [“Allow”, “Drop”, “Reject”, “Pass”]. When the rule action is “Allow” or “Drop”, Antrea will allow or drop traffic which matches both from/to
, ports
and protocols
sections of that rule, given that traffic does not match a higher precedence rule in the cluster (ACNP rules created in higher order Tiers or policy instances in the same Tier with lower priority number). If a “Reject” rule is matched, the client initiating the traffic will receive ICMP host administratively prohibited
code for ICMP, UDP and SCTP request, or an explicit reject response for TCP request, instead of timeout. A “Pass” rule, on the other hand, skips this packet for further ACNP rule evaluations (all ACNP rules that has lower priority than the current “Pass” rule will be skipped, except for the Baseline Tier rules), and delegates the decision to developer created namespaced NetworkPolicies. If no NetworkPolicy matches this traffic, then the Baseline Tier rules will still be matched against. Note that the “Pass” action does not make sense when configured in Baseline Tier ACNP rules, and such configurations will be rejected by the admission controller. Note: “Pass” and “Reject” actions are not supported for rules applied to multicast traffic.
ingress: Each ClusterNetworkPolicy may consist of zero or more ordered set of ingress rules. Under ports
, the optional field endPort
can only be set when a numerical port
is set to represent a range of ports from port
to endPort
inclusive. protocols
defines additional protocols that are not supported by ports
. Currently only ICMP protocol and IGMP protocol are under protocols
. For ICMP
protocol, icmpType
and icmpCode
could be used to specify the ICMP traffic that this rule matches. And for IGMP
protocol, igmpType
and groupAddress
can be used to specify the IGMP traffic that this rule matches. Currently, only IGMP query is supported in ingress rules. Other IGMP types and multicast data traffic are not supported for ingress rules. Valid igmpType
is:
The group address in IGMP query packets can only be 224.0.0.1. As for Group-Specific IGMP query, which encodes the target group in the IGMP message, it is not supported yet because OVS can not recognize the address. Protocol IGMP
can not be used with ICMP
or properties like from
, to
, ports
and toServices
.
Also, each rule has an optional name
field, which should be unique within the policy describing the intention of this rule. If name
is not provided for a rule, it will be auto-generated by Antrea. The auto-generated name will be of format [ingress/egress]-[action]-[uid]
, e.g. ingress-allow-2f0ed6e, where [uid] is the first 7 bits of hash value of the rule based on sha1 algorithm. If a policy contains duplicate rules, or if a rule name is same as the auto-generated name of some other rules in the same policy, it will cause a conflict, and the policy will be rejected. A ClusterGroup name can be set in the group
field of an ingress section in place of stand-alone selectors to allow traffic from workloads/ipBlocks set in the ClusterGroup.
The first example policy contains a single rule, which allows matched traffic on a single port, from one of two sources: the first specified by a podSelector
and the second specified by a combination of a podSelector
and a namespaceSelector
. The policy contains a single rule, which allows matched traffic on multiple TCP ports (8000 through 9000 included, plus 6379) from all network endpoints selected by the “test-cg-with-frontend-selector” ClusterGroup. The third example policy contains a single rule, which drops all ingress traffic towards any Pod in Namespaces that have label app
set to no-network-access-required
. Note that an empty From
in the ingress rule means that this rule matches all ingress sources. Ingress From
section also supports ServiceAccount based selection. This allows users to use ServiceAccount to select Pods. More details can be found in the section. Note: The order in which the ingress rules are specified matters, i.e., rules will be enforced in the order in which they are written.
egress: Each ClusterNetworkPolicy may consist of zero or more ordered set of egress rules. Each rule, depending on the action
field of the rule, allows or drops traffic which matches all from
, ports
sections. Under ports
, the optional field endPort
can only be set when a numerical port
is set to represent a range of ports from port
to endPort
inclusive. protocols
defines additional protocols that are not supported by ports
. Currently, only ICMP protocol and IGMP protocol are under protocols
. For ICMP
protocol, icmpType
and icmpCode
could be used to specify the ICMP traffic that this rule matches. And for IGMP
protocol, igmpType
and groupAddress
can be used to specify the IGMP traffic that this rule matches. If igmpType
is not set, all reports will be matched. If groupAddress
is empty, then all multicast group addresses will be matched here. Only IGMP reports are supported in egress rules. Protocol IGMP
can not be used with ICMP
or properties like from
, to
, ports
and toServices
. Valid igmpType
are:
message type | value |
---|---|
IGMPv1 Membership Report | 0x12 |
IGMPv2 Membership Report | 0x16 |
IGMPv3 Membership Report | 0x22 |
Also, each rule has an optional name
field, which should be unique within the policy describing the intention of this rule. If name
is not provided for a rule, it will be auto-generated by Antrea. The rule name auto-generation process is the same as ingress rules. A ClusterGroup name can be set in the group
field of a egress to
section in place of stand-alone selectors to allow traffic to workloads/ipBlocks set in the ClusterGroup. toServices
field contains a list of combinations of Service Namespace and Service Name to match traffic to this Service.
More details can be found in the toServices section. The policy contains a single rule, which drops matched traffic on a single port, to the 10.0.10.0/24 subnet specified by the ipBlock
field. The second example policy contains a single rule, which drops matched traffic on TCP port 5978 to all network endpoints selected by the “test-cg-with-ip-block” ClusterGroup. The policy contains a single rule, which drops all egress traffic initiated by any Pod in Namespaces that have app
set to no-network-access-required
. The sixth example policy contains a single rule, which drops traffic from “role: client” labeled Pods from “env: prod” labeled Namespaces to Service svcNamespace/svcName via ClusterIP. Note that an empty to
+ an empty toServices
in the egress rule means that this rule matches all egress destinations. Egress To
section also supports FQDN based filtering. This can be applied to exact FQDNs or wildcard expressions. More details can be found in the section. Egress To
section also supports ServiceAccount based selection. This allows users to use ServiceAccount to select Pods. More details can be found in the ServiceAccountSelector section. Note: The order in which the egress rules are specified matters, i.e., rules will be enforced in the order in which they are written.
enableLogging: Antrea-native policy ingress or egress rules can be audited by enabling its logging field. When enableLogging
field is set to true, the first packet of any connection that matches this rule will be logged to a separate file (/var/log/antrea/networkpolicy/np.log
) on the Node on which the rule is applied. These log files can then be retrieved for further analysis. By default, rules are not logged. The example policy logs all traffic that matches the “DropToThirdParty” egress rule, while the rule “AllowFromFrontend” is not logged. Specifically for drop and reject rules, deduplication is applied to reduce duplicated logs, and duplication buffer length is set to 1 second. If a rule name is not provided, an identifiable name will be generated for the rule and displayed in the log. For rules in layer 7 NetworkPolicy, packets are logged with action Redirect
prior to analysis by the layer 7 engine, more details are available in the corresponding engine logs. The rules are logged in the following format:
<yyyy/mm/dd> <time> <ovs-table-name> <antrea-native-policy-reference> <rule-name> <action> <openflow-priority> <source-ip> <source-port> <destination-ip> <destination-port> <protocol> <packet-length>
Deduplication:
<yyyy/mm/dd> <time> <ovs-table-name> <antrea-native-policy-reference> <rule-name> <action> <openflow-priority> <source-ip> <source-port> <destination-ip> <destination-port> <protocol> <packet-length> [<num of packets> packets in <duplicate duration>]
Examples:
2020/11/02 22:21:21.148395 AntreaPolicyAppTierIngressRule AntreaNetworkPolicy:default/test-anp test-rule Allow 61800 10.10.1.65 35402 10.0.0.5 80 TCP 60
2021/06/24 23:56:41.346165 AntreaPolicyEgressRule AntreaNetworkPolicy:default/test-anp test-rule Drop 44900 10.10.1.65 35402 10.0.0.5 80 TCP 60 [3 packets in 1.011379442s]
2022/09/20 02:21:25.879364 AntreaPolicyIngressRule AntreaNetworkPolicy:default/test-anp ingress-drop-1cffec1 Drop 44900 10.10.1.14 <nil> 10.10.1.15 <nil> ICMP 84
Kubernetes NetworkPolicies can also be audited using Antrea logging to the same file (/var/log/antrea/networkpolicy/np.log
). Add Annotation networkpolicy.antrea.io/enable-logging: "true
on a Namespace to enable logging for all NetworkPolicies in the Namespace. Packets of any connection that match a NetworkPolicy rule will be logged with a reference to the NetworkPolicy name, but packets dropped by the implicit “default drop” (not allowed by any NetworkPolicy) will only be logged with consistent name K8sNetworkPolicy
for reference. When using Antrea logging for Kubernetes NetworkPolicies, the rule name field is not set and defaults to <nil>
value. The rules are logged in the following format:
<yyyy/mm/dd> <time> <ovs-table-name> <k8s-network-policy-reference> <nil> Allow <openflow-priority> <source-ip> <source-port> <destination-ip> <destination-port> <protocol> <packet-length>
Default dropped traffic:
<yyyy/mm/dd> <time> <ovs-table-name> K8sNetworkPolicy <nil> Drop <nil> <source-ip> <source-port> <destination-ip> <destination-port> <protocol> <packet-length> [<num of packets> packets in <duplicate duration>]
Examples:
2022/07/26 06:55:56.170456 IngressRule K8sNetworkPolicy:default/test-np-log <nil> Allow 190 10.10.1.82 49518 10.10.1.84 80 TCP 60
2022/07/26 06:55:57.142206 IngressDefaultRule K8sNetworkPolicy <nil> Drop <nil> 10.10.1.83 38608 10.10.1.84 80 TCP 60
Fluentd can be used to assist with collecting and analyzing the logs. Refer to the for documentation.
appliedTo per rule: A ClusterNetworkPolicy ingress or egress rule may optionally contain the appliedTo
field. Semantically, the appliedTo
field per rule is similar to the appliedTo
field at the policy level, except that the scope of the appliedTo
is rule itself, as opposed to all rules in the policy, as is the case for appliedTo
in policy spec. If used, the appliedTo
field must be set for all the rules existing in the policy and cannot be set along with appliedTo
at the policy level.
Below is an example of appliedTo-per-rule ACNP usage:
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-appliedto-per-rule
spec:
priority: 1
ingress:
- action: Drop
appliedTo:
- podSelector:
matchLabels:
app: db-restricted-west
from:
- podSelector:
matchLabels:
app: client-east
- action: Drop
appliedTo:
- podSelector:
matchLabels:
app: db-restricted-east
from:
- podSelector:
matchLabels:
app: client-west
Note: In a given ClusterNetworkPolicy, all rules/appliedTo
fields must either contain stand-alone selectors or references to ClusterGroup. Usage of ClusterGroups along with stand-alone selectors is not allowed.
Behavior of to and from selectors
The following selectors can be specified in an ingress from
section or egress to
section when defining networking peers for policy rules:
podSelector: This selects particular Pods from all Namespaces as “sources”, if set in ingress
section, or as “destinations”, if set in egress
section.
podSelector and namespaceSelector: A single to/from entry that specifies both namespaceSelector and podSelector selects particular Pods within particular Namespaces.
nodeSelector: This selects particular Nodes in cluster. The selected Node’s IPs will be set as “sources” if nodeSelector
set in ingress
section, or as “destinations” if is set in the egress
section. For more information on its usage, refer to .
namespaces: The namespaces
field allows users to perform advanced matching on Namespaces which cannot be done via label selectors. Refer to this section for more details, and for usage.
group: A group
refers to a ClusterGroup to which an ingress/egress peer, or an appliedTo
must resolve to. More information on ClusterGroups can be found in this section.
serviceAccount: This selects all the Pods which have been assigned a specific ServiceAccount. For more information on its usage, refer to .
ipBlock: This selects particular IP CIDR ranges to allow as ingress
“sources” or egress
“destinations”. These should be cluster-external IPs, since Pod IPs are ephemeral and unpredictable.
fqdn: This selector is applicable only to the to
section in an egress
block. It is used to select Fully Qualified Domain Names (FQDNs), specified either by exact name or wildcard expressions, when defining egress
rules. For more information on its usage, refer to this section.
Key differences from K8s NetworkPolicy
- ClusterNetworkPolicy is at the cluster scope, hence a
podSelector
without anynamespaceSelector
selects Pods from all Namespaces. - There is no automatic isolation of Pods on being selected in appliedTo.
- Ingress/Egress rules in ClusterNetworkPolicy has an
action
field which specifies whether the matched rule allows or drops the traffic. - IPBlock field in the ClusterNetworkPolicy rules do not have the
except
field. A higher priority rule can be written to deny the specific CIDR range to simulate the behavior of IPBlock field withcidr
andexcept
set. - Rules assume the priority in which they are written. i.e. rule set at top takes precedence over a rule set below it.
kubectl commands for Antrea ClusterNetworkPolicy
The following kubectl
commands can be used to retrieve ACNP resources:
# Use long name
kubectl get clusternetworkpolicies
# Use long name with API Group
kubectl get clusternetworkpolicies.crd.antrea.io
# Use short name
kubectl get acnp
# Use short name with API Group
kubectl get acnp.crd.antrea.io
All the above commands produce output similar to what is shown below:
NAME TIER PRIORITY AGE
test-cnp emergency 5 54s
Antrea NetworkPolicy
Antrea NetworkPolicy (ANP) is another policy CRD, which is similar to the ClusterNetworkPolicy CRD, however its scope is limited to a Namespace. The purpose of introducing this CRD is to allow admins to take advantage of advanced NetworkPolicy features and apply them within a Namespace to complement the K8s NetworkPolicies. Similar to the ClusterNetworkPolicy resource, Antrea NetworkPolicy can also be associated with Tiers.
The Antrea NetworkPolicy resource
An example Antrea NetworkPolicy might look like this:
apiVersion: crd.antrea.io/v1alpha1
kind: NetworkPolicy
metadata:
name: test-anp
namespace: default
spec:
priority: 5
tier: securityops
appliedTo:
- podSelector:
matchLabels:
role: db
ingress:
- action: Allow
from:
- podSelector:
matchLabels:
role: frontend
- podSelector:
matchLabels:
role: nondb
namespaceSelector:
matchLabels:
role: db
ports:
- protocol: TCP
port: 8080
endPort: 9000
name: AllowFromFrontend
enableLogging: false
egress:
- action: Drop
to:
- ipBlock:
cidr: 10.0.10.0/24
ports:
- protocol: TCP
port: 5978
name: DropToThirdParty
enableLogging: true
Antrea NetworkPolicy shares its spec with ClusterNetworkPolicy. However, the following documents some of the key differences between the two Antrea policy CRDs.
- Antrea NetworkPolicy is Namespaced while ClusterNetworkPolicy operates at cluster scope.
- Unlike the
appliedTo
in a ClusterNetworkPolicy, setting anamespaceSelector
in theappliedTo
field is forbidden. podSelector
without anamespaceSelector
, set within a NetworkPolicy Peer of any rule, selects Pods from the Namespace in which the Antrea NetworkPolicy is created. This behavior is similar to the K8s NetworkPolicy.- Antrea NetworkPolicy supports both stand-alone selectors and Group references.
- Antrea NetworkPolicy does not support
namespaces
field within a peer, as Antrea NetworkPolicy themselves are scoped to a single Namespace.
Antrea NetworkPolicy with Group reference
Groups can be referenced in appliedTo
and to
/from
. Refer to the section for detailed information.
The following example Antrea NetworkPolicy realizes the same network policy as the previous example. It refers to three separately defined Groups - “test-grp-with-db-selector” that selects all Pods labeled “role: db”, “test-grp-with-frontend-selector” that selects all Pods labeled “role: frontend” and Pods labeled “role: nondb” in Namespaces labeled “role: db”, “test-grp-with-ip-block” that selects ipblock
“10.0.10.0/24”.
apiVersion: crd.antrea.io/v1alpha1
kind: NetworkPolicy
metadata:
name: anp-with-groups
namespace: default
spec:
priority: 5
tier: securityops
appliedTo:
- group: "test-grp-with-db-selector"
ingress:
- action: Allow
from:
- group: "test-grp-with-frontend-selector"
ports:
- protocol: TCP
port: 8080
endPort: 9000
name: AllowFromFrontend
enableLogging: false
egress:
- action: Drop
to:
- group: "test-grp-with-ip-block"
ports:
- protocol: TCP
port: 5978
name: DropToThirdParty
enableLogging: true
kubectl commands for Antrea NetworkPolicy
The following kubectl
commands can be used to retrieve ANP resources:
# Use long name with API Group
kubectl get networkpolicies.crd.antrea.io
# Use short name
kubectl get anp
# Use short name with API Group
kubectl get anp.crd.antrea.io
All the above commands produce output similar to what is shown below:
NAME TIER PRIORITY AGE
test-anp securityops 5 5s
Antrea-native Policy ordering based on priorities
Antrea-native policy CRDs are ordered based on priorities set at various levels.
Ordering based on Tier priority
With the introduction of Tiers, Antrea-native policies are first enforced based on the Tier to which they are associated. i.e. all policies belonging to a higher precedenced Tier are enforced first, followed by policies belonging to the next Tier and so on, until the “application” Tier policies are enforced. K8s NetworkPolicies are enforced next, and “baseline” Tier policies will be enforced last.
Ordering based on policy priority
Within a Tier, Antrea-native policy CRDs are ordered by the priority
at the policy level. Thus, the policy with the highest precedence (the smallest numeric priority value) is enforced first. This ordering is performed solely based on the priority
assigned, as opposed to the “Kind” of the resource, i.e. the relative ordering between a and an Antrea NetworkPolicy resource within a Tier depends only on the priority
set in each of the two resources.
Rule enforcement based on priorities
Within a policy, rules are enforced in the order in which they are set. For example, consider the following:
- ACNP1{tier: application, priority: 10, ingressRules: [ir1.1, ir1.2], egressRules: [er1.1, er1.2]}
- ANP1{tier: application, priority: 15, ingressRules: [ir2.1, ir2.2], egressRules: [er2.1, er2.2]}
- ACNP3{tier: emergency, priority: 20, ingressRules: [ir3.1, ir3.2], egressRules: [er3.1, er3.2]}
This translates to the following order:
- Ingress rules: ir3.1 > ir3.2 > ir1.1 -> ir1.2 -> ir2.1 -> ir2.2
- Egress rules: er3.1 > er3.2 > er1.1 -> er1.2 -> er2.1 -> er2.2
Once a rule is matched, it is executed based on the action set. If none of the policy rules match, the packet is then enforced for rules created for K8s NP. If the packet still does not match any rule for K8s NP, it will then be evaluated against policies created in the “baseline” Tier.
The antctl command with ‘sort-by=effectivePriority’ flag can be used to check the order of policy enforcement. An example output will look like the following:
antctl get netpol --sort-by=effectivePriority
NAME APPLIED-TO RULES SOURCE TIER-PRIORITY PRIORITY
4c504456-9158-4838-bfab-f81665dfae12 85b88ddb-b474-5b44-93d3-c9192c09085e 1 AntreaClusterNetworkPolicy:acnp-1 250 1
41e510e0-e430-4606-b4d9-261424184fba e36f8beb-9b0b-5b49-b1b7-5c5307cddd83 1 AntreaClusterNetworkPolicy:acnp-2 250 2
819b8482-ede5-4423-910c-014b731fdba6 bb6711a1-87c7-5a15-9a4a-71bf49a78056 2 AntreaNetworkPolicy:anp-10 250 10
4d18e031-f05a-48f6-bd91-0197b556ccca e216c104-770c-5731-bfd3-ff4ccbc38c39 2 K8sNetworkPolicy:default/test-1 <NONE> <NONE>
c547002a-d8c7-40f1-bdd1-8eb6d0217a67 e216c104-770c-5731-bfd3-ff4ccbc38c39 1 K8sNetworkPolicy:default/test-2 <NONE> <NONE>
aac8b8bc-f3bf-4c41-b6e0-2af1863204eb bb6711a1-87c7-5a15-9a4a-71bf49a78056 3 AntreaClusterNetworkPolicy:baseline 253 10
The contains more information on how policy rules are realized by OpenFlow, and how the priority of flows reflects the order in which they are enforced.
Selecting Namespace by Name
Kubernetes NetworkPolicies and Antrea-native policies allow selecting workloads from Namespaces with the use of a label selector (i.e. namespaceSelector
). However, it is often desirable to be able to select Namespaces directly by their name
as opposed to using the labels
associated with the Namespaces.
K8s clusters with version 1.21 and above
Starting with K8s v1.21, all Namespaces are labeled with the kubernetes.io/metadata.name: <namespaceName>
provided that the NamespaceDefaultLabelName
feature gate (enabled by default) is not disabled in K8s. K8s NetworkPolicy and Antrea-native policy users can take advantage of this reserved label to select Namespaces directly by their name
in namespaceSelectors
as follows:
Note: NamespaceDefaultLabelName
feature gate is scheduled to be removed in K8s v1.24, thereby ensuring that labeling Namespaces by their name cannot be disabled.
K8s clusters with version 1.20 and below
In order to select Namespaces by name, Antrea labels Namespaces with a reserved label antrea.io/metadata.name
, whose value is set to the Namespace’s name. Users can then use this label in the namespaceSelector
field, in both K8s NetworkPolicies and Antrea-native policies to select Namespaces by name. By default, Namespaces are not labeled with the reserved name label. In order for the Antrea controller to label the Namespaces, the labelsmutator.antrea.io
MutatingWebhookConfiguration
must be enabled. This can be done by applying the following webhook configuration YAML:
apiVersion: admissionregistration.k8s.io/v1
kind: MutatingWebhookConfiguration
metadata:
# Do not edit this name.
name: "labelsmutator.antrea.io"
webhooks:
- name: "namelabelmutator.antrea.io"
clientConfig:
service:
name: "antrea"
namespace: "kube-system"
path: "/mutate/namespace"
rules:
- operations: ["CREATE", "UPDATE"]
apiGroups: [""]
apiVersions: ["v1"]
resources: ["namespaces"]
scope: "Cluster"
admissionReviewVersions: ["v1", "v1beta1"]
sideEffects: None
Note: antrea-controller
Pod must be restarted after applying this YAML.
Once the webhook is configured, Antrea will start labeling all new and updated Namespaces with the antrea.io/metadata.name: <namespaceName>
label. Users may now use this reserved label to select Namespaces by name as follows:
apiVersion: crd.antrea.io/v1alpha1
kind: NetworkPolicy
metadata:
name: test-anp-by-name
namespace: default
spec:
priority: 5
tier: application
appliedTo:
- podSelector: {}
egress:
- action: Allow
to:
- podSelector:
matchLabels:
k8s-app: kube-dns
namespaceSelector:
matchLabels:
antrea.io/metadata.name: kube-system
ports:
- protocol: TCP
port: 53
- protocol: UDP
port: 53
name: AllowToCoreDNS
The above example allows all Pods from Namespace “default” to connect to all “kube-dns” Pods from Namespace “kube-system” on TCP port 53.
Selecting Pods in the same Namespace with Self
The namespaces
field allows users to perform advanced matching on Namespace objects that cannot be done via label selectors. Currently, the namespaces
field has only one matching strategy, Self
. If set to Self
, for each Pod targeted by the appliedTo of the policy/rule, this field will cause the rule to select endpoints in the same Namespace as that Pod. It enables policy writers to create per-Namespace rules within a single policy. This field is optional and cannot be set along with a namespaceSelector
within the same peer.
Consider a minimalistic cluster, where there are only three Namespaces labeled ns=x, ns=y and ns=z. Inside each of these Namespaces, there are three Pods labeled app=a, app=b and app=c.
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: allow-self-ns
spec:
priority: 1
tier: platform
appliedTo:
- namespaceSelector: {}
ingress:
- action: Allow
from:
- namespaces:
match: Self
- action: Deny
egress:
- action: Allow
to:
- namespaces:
match: Self
- action: Deny
The policy above ensures that x/a, x/b and x/c can communicate with each other, but nothing else (unless there are higher precedenced policies which say otherwise). Same for Namespaces y and z.
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: deny-self-ns-a-to-b
spec:
priority: 1
tier: securityops
appliedTo:
- namespaceSelector: {}
podSelector:
matchLabels:
app: b
ingress:
- action: Deny
- namespaces:
match: Self
podSelector:
matchLabels:
app: a
The deny-self-ns-a-to-b
policy ensures that traffic from x/a to x/b, y/a to y/b and z/a to z/b are denied. It can be used in conjunction with the allow-self-ns
policy. If both policies are applied, the only other Pod that x/a can reach in the cluster will be Pod x/c.
These two policies shown above are for demonstration purposes only. For more realistic usage of the namespaces
field, refer to this sample YAML in the previous section.
Antrea-native policy features a fqdn
field in egress rules to select Fully Qualified Domain Names (FQDNs), specified either by exact FQDN name or wildcard expressions.
The standard Allow
, Drop
and Reject
actions apply to FQDN egress rules.
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-fqdn-all-foobar
spec:
priority: 1
appliedTo:
- podSelector:
matchLabels:
app: client
egress:
- action: Allow
to:
- fqdn: "*foobar.com"
ports:
- protocol: TCP
port: 8080
- action: Drop # Drop all other egress traffic, in-cluster or out-of-cluster
The above example allows all traffic destined to any FQDN that matches the wildcard expression *foobar.com
on port 8080, originating from any Pod with label app
set to client
across any Namespace. For these client
Pods, all other egress traffic are dropped.
Note that for FQDN wildcard expressions, the *
character can match multiple subdomains (i.e. *foobar.com
will match foobar.com
, www.foobar.com
and test.uswest.foobar.com
).
Antrea will only program datapath rules for actual egress traffic towards these FQDNs, based on DNS results. It will not interfere with DNS packets, unless there is a separate policy dropping/rejecting communication between the DNS components and the Pods selected.
Note that FQDN based policies do not work for Service DNS names created by Kubernetes (e.g. kubernetes.default.svc
or antrea.kube-system.svc
), except for headless Services. The reason is that Antrea will use the information included in A or AAAA DNS records to implement FQDN based policies. In the case of “normal” (not headless) Services, the DNS name resolves to the ClusterIP for the Service, but policy rules are enforced after AntreaProxy Service Load-Balancing and at that stage the destination IP address has already been rewritten to the address of an endpoint backing the Service. For headless Services, a ClusterIP is not allocated and, assuming the Service has a selector, the DNS server returns A / AAAA records that point directly to the endpoints. In that case, FQDN based policies can be used successfully. For example, the following policy, which specifies an exact match on a DNS name, will drop all egress traffic destined to headless Service svcA
defined in the default
Namespace:
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-fqdn-headless-service
spec:
priority: 1
appliedTo:
- podSelector:
matchLabels:
app: client
egress:
- action: Drop
to:
- fqdn: "svcA.default.svc.cluster.local"
Node Selector
NodeSelector selects certain Nodes which match the label selector. When used in the to
field of an egress rule, it adds the Node IPs to the rule’s destination address group; when used in the from
field of an ingress rule, it adds the Node IPs to the rule’s source address group.
Notice that when a rule with a nodeSelector applies to a Node, it only restricts the traffic to/from certain IPs of the Node. The IPs include:
- The Node IP (the IP address in the Node API object)
- The Antrea gateway IP (the IP address of the interface antrea-agent will create and use for Node-to-Pod communication)
- The transport IP (the IP address of the interface used for tunneling or routing the traffic across Nodes) if it’s different from Node IP
Traffic to/from other IPs of the Node will be ignored. Meanwhile, NodeSelector
doesn’t affect the traffic from Node to Pods running on that Node. Such traffic will always be allowed to make sure that agents on a Node (e.g. system daemons, kubelet) can communicate with all Pods on that Node to perform liveness and readiness probes. For more information, see .
For example, the following rule applies to Pods with label app=antrea-test-app
and will Drop
egress traffic to Nodes on TCP port 6443 which have the labels node-role.kubernetes.io/control-plane
.
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: egress-control-plane
spec:
priority: 1
appliedTo:
- podSelector:
matchLabels:
app: antrea-test-app
egress:
- action: Drop
to:
- nodeSelector:
matchLabels:
node-role.kubernetes.io/control-plane: ""
ports:
- protocol: TCP
port: 6443
toServices egress rules
A combination of Service name and Service Namespace can be used in toServices
in egress rules to refer to a K8s Service. toServices
match traffic based on the clusterIP, port and protocol of Services. Thus, headless Service is not supported by this field. A sample policy can be found .
Since toServices
represents a combination of IP+port, it cannot be used with to
or ports
within the same egress rule. Also, since the matching process relies on the groupID assigned to Service by AntreaProxy, this field can only be used when AntreaProxy is enabled.
This clusterIP-based match has one caveat: direct access to the Endpoints of this Service is not affected by toServices
rules. To restrict access towards backend Endpoints of a Service, define a ClusterGroup
with ServiceReference
and use the name of ClusterGroup in the Antrea-native policy rule’s group
field instead. ServiceReference
of a ClusterGroup is equivalent to a podSelector
of a ClusterGroup that selects all backend Pods of a Service, based on the Service spec’s matchLabels. Antrea will keep the Endpoint selection up-to-date in case the Service’s matchLabels change, or Endpoints are added/deleted for that Service. For more information on ServiceReference
, refer to the serviceReference
paragraph of the ClusterGroup section.
ServiceAccount based selection
Antrea ClusterNetworkPolicy features a serviceAccount
field to select all Pods that have been assigned the ServiceAccount referenced in this field. This field could be used in appliedTo
, ingress from
and egress to
section. No matter which sections the serviceAccount
field is used in, it cannot be used with any other fields.
serviceAccount
uses namespace
and name
to select the ServiceAccount with a specific name under a specific namespace.
An example policy using serviceAccount
could look like this:
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-service-account
spec:
priority: 5
tier: securityops
appliedTo:
- serviceAccount:
name: sa-1
namespace: ns-1
egress:
- action: Drop
to:
- serviceAccount:
name: sa-2
namespace: ns-2
name: ServiceAccountEgressRule
enableLogging: false
In this example, the policy will be applied to all Pods whose ServiceAccount is sa-1
of ns-1
. Let’s call those Pods “appliedToPods”. The egress to
section will select all Pods whose ServiceAccount is in ns-2
Namespace and name as sa-2
. Let’s call those Pods “egressPods”. After this policy is applied, traffic from “appliedToPods” to “egressPods” will be dropped.
Note: Antrea will use a reserved label key for internal processing serviceAccount
. The reserved label looks like: internal.antrea.io/service-account:[ServiceAccountName]
. Users should avoid using this label key in any entities no matter if a policy with serviceAccount
is applied in the cluster.
Apply to NodePort Service
Antrea ClusterNetworkPolicy features a service
field in appliedTo
field to enforce the ACNP rules on the traffic from external clients to a NodePort Service.
service
uses namespace
and name
to select the Service with a specific name under a specific Namespace; only a NodePort Service can be referred by service
field.
There are a few restrictions on configuring a policy/rule that applies to NodePort Services:
- This feature can only work when Antrea proxyAll is enabled and kube-proxy is disabled.
service
field cannot be used with any other fields inappliedTo
.- a policy or a rule can’t be applied to both a NodePort Service and other entities at the same time.
- If a
appliedTo
withservice
is used at policy level, then this policy can only contain ingress rules. - If a
appliedTo
withservice
is used at rule level, then this rule can only be an ingress rule. - If an ingress rule is applied to a NodePort Service, then this rule can only use
ipBlock
in itsfrom
field.
An example policy using service
in appliedTo
could look like this:
apiVersion: crd.antrea.io/v1alpha1
kind: ClusterNetworkPolicy
metadata:
name: acnp-deny-external-client-nodeport-svc-access
spec:
priority: 5
tier: securityops
appliedTo:
- service:
name: svc-1
namespace: ns-1
ingress:
- action: Drop
from:
- ipBlock:
cidr: 1.1.1.0/24
In this example, the policy will be applied to the NodePort Service svc-1
in Namespace ns-1
, and drop all packets from CIDR 1.1.1.0/24
.
ClusterGroup
A ClusterGroup (CG) CRD is a specification of how workloads are grouped together. It allows admins to group Pods using traditional label selectors, which can then be referenced in ACNP in place of stand-alone podSelector
and/or namespaceSelector
. In addition to podSelector
and namespaceSelector
, ClusterGroup also supports the following ways to select endpoints:
- Pod grouping by
serviceReference
. ClusterGroup specified byserviceReference
will contain the same Pod members that are currently selected by the Service’s selector. ipBlock
oripBlocks
to share IPBlocks between ACNPs.childGroups
to select other ClusterGroups by name.
ClusterGroups allow admins to separate the concern of grouping of workloads from the security aspect of Antrea-native policies. It adds another level of indirection allowing users to update group membership without having to update individual policy rules.
ClusterGroup CRD
Below are some example ClusterGroup specs:
apiVersion: crd.antrea.io/v1alpha3
kind: ClusterGroup
metadata:
name: test-cg-sel
spec:
podSelector:
matchLabels:
role: db
namespaceSelector:
matchLabels:
env: prod
---
apiVersion: crd.antrea.io/v1alpha3
kind: ClusterGroup
metadata:
name: test-cg-ip-block
spec:
# ipBlocks cannot be set along with podSelector, namespaceSelector or serviceReference.
ipBlocks:
- cidr: 10.0.10.0/24
---
apiVersion: crd.antrea.io/v1alpha3
kind: ClusterGroup
metadata:
name: test-cg-svc-ref
spec:
# serviceReference cannot be set along with podSelector, namespaceSelector or ipBlocks.
serviceReference:
name: test-service
namespace: default
---
apiVersion: crd.antrea.io/v1alpha3
kind: ClusterGroup
metadata:
name: test-cg-nested
spec:
childGroups: [test-cg-sel, test-cg-ip-blocks, test-cg-svc-ref]
There are a few restrictions on how ClusterGroups can be configured:
- A ClusterGroup is a cluster-scoped resource and therefore can only be set in an Antrea ClusterNetworkPolicy’s
appliedTo
andto
/from
peers. - For the
childGroup
field, currently only one level of nesting is supported: If a ClusterGroup has childGroups, it cannot be selected as a childGroup by other ClusterGroups. - ClusterGroup must exist before another ClusterGroup can select it by name as its childGroup. A ClusterGroup cannot be deleted if it is referred to by other ClusterGroup as childGroup. This restriction may be lifted in future releases.
- At most one of
podSelector
,serviceReference
,ipBlock
,ipBlocks
orchildGroups
can be set for a ClusterGroup, i.e. a single ClusterGroup can either group workloads, represent IP CIDRs or select other ClusterGroups. A parent ClusterGroup can select different types of ClusterGroups (Pod/Service/CIDRs), but as mentioned above, it cannot select a ClusterGroup that has childGroups itself.
spec: The ClusterGroup spec
has all the information needed to define a cluster-wide group.
podSelector: Pods can be grouped cluster-wide using
podSelector
. If set with anamespaceSelector
, all matching Pods from Namespaces selected by thenamespaceSelector
will be grouped.namespaceSelector: All Pods from Namespaces selected by the namespaceSelector will be grouped. If set with a
podSelector
, all matching Pods from Namespaces selected by thenamespaceSelector
will be grouped.ipBlock: This selects a particular IP CIDR range to allow as
ingress
“sources” oregress
“destinations”. A ClusterGroup withipBlock
referenced in an ACNP’sappliedTo
field will be ignored, and the policy will have no effect. For a same ClusterGroup,ipBlock
andipBlocks
cannot be set concurrently. ipBlock will be deprecated for ipBlocks in future versions of ClusterGroup.ipBlocks: This selects a list of IP CIDR ranges to allow as
ingress
“sources” oregress
“destinations”. A ClusterGroup withipBlocks
referenced in an ACNP’sappliedTo
field will be ignored, and the policy will have no effect. For a same ClusterGroup,ipBlock
andipBlocks
cannot be set concurrently.serviceReference: Pods that serve as the backend for the specified Service will be grouped. Services without selectors are currently not supported, and will be ignored if referred by
serviceReference
in a ClusterGroup. When ClusterGroups withserviceReference
are used in ACNPs asappliedTo
orto
/from
peers, no Service port information will be automatically assumed for traffic enforcement.ServiceReference
is merely a mechanism to group Pods and ensure that a ClusterGroup stays in sync with the set of Pods selected by a given Service.childGroups: This selects existing ClusterGroups by name. The effective members of the “parent” ClusterGroup will be the union of all its childGroups’ members. See the section above for restrictions.
status: The ClusterGroup status
field determines the overall realization status of the group.
- groupMembersComputed: The “GroupMembersComputed” condition is set to “True” when the controller has calculated all the corresponding workloads that match the selectors set in the group.
kubectl commands for ClusterGroup
The following kubectl
commands can be used to retrieve CG resources:
# Use long name with API Group
kubectl get clustergroups.crd.antrea.io
# Use short name
kubectl get cg
# Use short name with API Group
kubectl get cg.crd.antrea.io
Group
A Group CRD represents a different way for specifying how workloads are grouped together, and is conceptually similar to the ClusterGroup CRD. Users will be able to refer to Groups in Antrea NetworkPolicy resources instead of specifying Pod and Namespace selectors every time.
Group CRD
Below are some example Group specs:
# Group that selects all Pods labeled role: db in the default Namespace
apiVersion: crd.antrea.io/v1alpha3
kind: Group
metadata:
name: test-grp-sel
namespace: default
spec:
podSelector:
matchLabels:
role: db
---
# Group that selects all Pods labeled role: db in Namespaces labeled env: prod.
# This Group cannot be used in Antrea NetworkPolicy appliedTo because of the namespaceSelector.
apiVersion: crd.antrea.io/v1alpha3
kind: Group
metadata:
name: test-grp-with-namespace
spec:
podSelector:
matchLabels:
role: db
namespaceSelector:
matchLabels:
env: prod
---
# Group that selects IP block 10.0.10.0/24.
apiVersion: crd.antrea.io/v1alpha3
kind: Group
metadata:
name: test-grp-ip-block
spec:
# ipBlocks cannot be set along with podSelector, namespaceSelector or serviceReference.
ipBlocks:
- cidr: 10.0.10.0/24
---
# Group that selects Service named test-service in the default Namespace.
apiVersion: crd.antrea.io/v1alpha3
kind: Group
metadata:
name: test-grp-svc-ref
spec:
# serviceReference cannot be set along with podSelector, namespaceSelector or ipBlocks.
serviceReference:
name: test-service
namespace: default
---
# Group that includes the previous Groups as childGroups.
apiVersion: crd.antrea.io/v1alpha3
kind: Group
metadata:
name: test-grp-nested
spec:
childGroups: [test-grp-sel, test-grp-ip-blocks, test-grp-svc-ref]
Group has a similar spec with ClusterGroup. However, there are key differences and restrictions.
- A Group can be set in an Antrea NetworkPolicy’s
appliedTo
andto
/from
peers. When set in theappliedTo
field, it cannot includenamespaceSelector
, since Antrea NetworkPolicy is Namespace scoped. For example, thetest-grp-with-namespace
Group in the cannot be used by Antrea NetworkPolicyappliedTo
. - Antrea will not validate the referenced Group resources for the
appliedTo
convention; if the convention is violated in the Antrea NetworkPolicy’sappliedTo
section or for any of the rules’appliedTo
, then Antrea will report a conditionRealizable=False
in the NetworkPolicy status, the condition includesNetworkPolicyAppliedToUnsupportedGroup
reason and a detailed message. childGroups
only accepts strings, and they will be considered as names of the Groups and will be looked up in the policy’s own Namespace. For example, if child Groupchild-0
exists inns-2
, it should not be added as a child Group forns-1/parentGroup-0
.
kubectl commands for Group
The following kubectl
commands can be used to retrieve Group resources:
Notes and constraints
- There is a soft limit of 20 on the maximum number of Tier resources that are supported. But for optimal performance, it is recommended that the number of Tiers in a cluster be less than or equal to 10.
- In order to reduce the churn in the agent, it is recommended to set the policy priority (acnp/anp.spec.priority) within the range 1.0 to 100.0.
- The v1alpha1 policy CRDs support up to 10,000 unique priorities at policy level, and up to 50,000 unique priorities at rule level, across all Tiers except for the “baseline” Tier. For any two Antrea-native policy rules, their rule level priorities are only considered equal if their policy objects share the same Tier and have the same policy priority, plus the rules themselves are of the same rule priority (rule priority is the sequence number of the rule within the policy’s ingress or egress section).
- For the “baseline” Tier, the max supported unique priorities (at rule level) is 150.
- If there are multiple Antrea-native policy rules created at the same rule-level priority (same policy Tier, policy priority and rule priority), and happen to select overlapping traffic patterns but have conflicting rule actions (e.g.
Allow
v.s.Deny
), the behavior of such traffic will be undeterministic. In general, we recommended against creating rules with conflicting actions in policy resources at the same priority. For example, consider two AntreaNetworkPolicies created in the same Namespace and Tier with the same policy priority. The first policy applies to allapp=web
Pods in the Namespace and has only one ingress rule toDeny
all traffic fromrole=dev
Pods. The other policy also applies to allapp=web
Pods in the Namespace and has only one ingress rule, which is toAllow
all traffic fromapp=client
Pods. Those two ingress rules might not always conflict, but in case a Pod with both theapp=client
androle=dev
labels initiates traffic towards the Pods in the Namespace, both rules will be matched at the same priority with conflicting actions. It will be the policy writer’s responsibility to identify such ambiguities in rule definitions and avoid potential undeterministic rule enforcement results.